Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 9

Umformung und Berechnung von Termen © Sven Dovermann PIXELIO www.pixelio.de

Mittels Termumformungen erhält man in der Regel eine Vereinfachung eines Terms. Das hat ja auch einen Sinn. Schließlich möchte man durch Termumformungen beispielsweise die Lösung einer Gleichung ermitteln oder eine binomische Formel von der unaufgelösten Form in die aufgelöste Form bringen. Termumformungen basieren hierbei auf algebraischen Grundregeln. Wendet man diese algebraischen Grundregeln bei Termen korrekt an, so verändert man den Wert des Terms nicht. In der Sprache der Mathematik nennt man das Wertgleichheit. Wertgleiche Terme bleiben mittels algebraischer Umformung weiterhin wertgleich. Wichtig ist es, alle Regeln zur Vereinfachung eines Terms sehr gut zu verinnerlichen. Umso mehr verliert Mathe dann auch seinen Schrecken. Schließlich geht es ja immer und immer wieder in diesem Fach um Umformungen von Termen!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Rechenoperationen Satz des Pythagoras Terme

Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 3

“Antikes Mathematik-Rechengerät“ © Dieter Schütz PIXELIO www.pixelio.de

Die Mathematik ist etwas sehr altes. Bereits in der Antike beschäftigten sich Menschen damit. Als Schülerin und Schüler weiß man das natürlich oft nicht. Warum auch? Mathe-Gesetze „fühlen“ sich eh zeitlos an! Daher ist beispielsweise der Satz des Pythagoras auch noch in 500 Millionen Jahren gültig – und darüber hinaus. Dennoch müssen Menschen erst auf solch eine Mathe-Gesetzmäßigkeit stoßen, was bei dem Satz des Pythagoras schon superlange her ist. Denn bereits im 6. Jahrhundert vor Christus stieß angeblich Pythagoras auf die nach ihm benannte sehr berühmte Gesetzmäßigkeit. Heute weiß man aber, dass auch schon vor ihm Babylonier und Ägypter diese Gesetzmäßigkeit kannten. In der Schule beim Satz des Pythagoras bekommt man daher spätestens einen Begriff davon, wie alt die Mathematik doch ist…

Kategorien
Binomische Formeln Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 7

Ein Schüler, der Mathe-Terme aufschreibt © I-vista PIXELIO www.pixelio.de

Immer wieder für einen hervorgerufen Ausdruck des Entsetzens gut ist das in Mathe häufig gebrauchte Wort Term. In einer Runde von Freunden sagt nämlich ein Mathematik-Begeisterter, als die Frage nach dem eigenen Hobby reihum geht: „Ich liebe Terme!“ Die meisten Anwesenden nicken hierbei verständnisvoll und äußern teilweise: „Badeanstalten sind ja auch wirklich großartig und machen enorm viel Spaß!“ Dem entgegnet der Mathe-Term-Liebhaber aber abrupt: Ich meine Terme OHNE ,h‘!“ „Wie bitte?!“ antworten darauf alle Vorortseienden entsetzt. „Meinst du das wirklich ernst oder soll das ein schlechter April-Scherz sein, auch wenn gerade nicht der 1. April ist (an dem Datum sind ja nur „offiziell“ Aprilscherze erlaubt)?!, fahren sie sogleich immer noch überaus entsetzt fort. Die Antwort des Mathematik-Liebhabers kann jedoch nur lauten: „Nein, nein, nein, in der Tat und schlussendlich meine ich natürlich Mathe-Terme!“

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu Ungleichungen, Teil 1


Ungleiche Verhältnisse zwischen Chef und Arbeiter © Dr. Klaus-Uwe Gerhardt PIXELIO www.pixelio.de

Neben Gleichungen gibt es in Mathematik noch sogenannte Ungleichungen. Wie der Name es schon vermuten lässt, unterscheiden sich hierbei Ungleichungen offenbar fundamental von Gleichungen, da die Vorsilbe „un“ im Deutschen immer eine Negation ausdrückt – und das demzufolge hier auch der Fall ist. Daher sind Ungleichungen definitiv keine Gleichungen – aber auch nicht komplett das Gegenteil davon.

Der zentrale Unterschied ist im Prinzip das Zeichen, das bei Ungleichungen auftritt. Denn bei einer Ungleichung wird normalerweise entweder ein „>“/„größer als“ oder ein „<“/„kleiner als“ verwendet anstatt wie bei einer Gleichung ein „=“/„gleich“. Dadurch gibt es auch im Gegensatz zu einer Gleichung niemals als Lösungsmenge eine einzige Lösung.

Bei der Ermittlung der Lösungsmenge gibt es aber eine signifikante Übereinstimmung zu Gleichungen. Sowohl Gleichungen als auch Ungleichungen löst man nämlich primär über Äquivalenzumformungen. Weiß man daher wie Äquivalenzumformungen in Mathe richtig gemacht werden, so kann man im Prinzip auch schon Ungleichungen lösen. Das ist doch super, so ökonomisch für die grauen Zellen kann nämlich Mathe auch sein!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 2

Mitternacht © Simone Hainz PIXELIO www.pixelio.de

Wenn ehemalige Schülerinnen und Schüler zu einer ganz bestimmten späteren Uhrzeit an Mathematik denken müssen – dann hat dies meist einen bestimmten Grund: Sie erinnern sich der großen Wichtigkeit einer Formel aus ihrem damaligen Mathe-Unterreicht – und zwar an die sogenannte Mitternachtsformel. Jeder, der früher Abitur gemacht hat, musste sich nämlich von seinem Mathe-Lehrer immer wieder gebetsmühlenartig anhören: „Diese Formel ist so wichtig, dass ihr sie sogar zu Mitternacht (und natürlich auch noch zu späterer Stunde 😉 ) auswendig vorsagen können müsst (und das, egal, wie euer geistiges und körperliches Befinden zu dieser Uhrzeit gerade ist 😉 )!“ Die Ergänzungen in der Klammer sind natürlich von mir spaßeshalber hinzugefügt worden, die Aussage des Lehrers entspricht jedoch einer wortwörtlichen Wiedergabe aus dem Mathe-Unterricht der Jahrzehnte vor dem 21. Jahrhundert. Denn noch vor der Schulreform und der damit einhergehenden Reform des Mathematik-Unterrichts hatte die Mitternachtsformel, mit der man die Lösungsmenge jeder quadratischen Gleichung der Form ax² + bx + c = 0 (a, b, x ∈ von und a ≠ 0) bestimmen kann, einen extrem hohen Stellenwert. Inzwischen sieht das jedoch fundamental anders aus!