Kategorien
Funktionen Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 3

Eine Funktion in Mathe © Samuel-G. PIXELIO www.pixelio.de

Beim Stoffgebiet lineare Funktionen in Mathe lernt man bereits, dass bei Funktionen sowohl immer rechnerisch als auch zeichnerisch Funktionsuntersuchungen gemacht werden können. Lineare Funktionen weisen ja auch, wie alle anderen Funktionen, bestimmte Merkmale/Charakteristika auf. So sind lineare Funktionen beispielsweise normalerweise linear steigend oder fallend (das kann man anhand der Funktionsgleichung ablesen) und sie haben einen Schnittpunkt mit der x und y-Achse (das kann man beides rechnerisch bestimmen). Der Graph einer linearen Funktion ist hierbei eine Gerade – die dann ebenfalls alle Merkmale/Charakteristika aufweist, welche man rechnerisch bestimmt hat oder bestimmen kann. Aus diesem Grund sind im Fach Mathematik lineare Funktionen auch sehr wichtig, da sie zur Gänze bereits darlegen, was das Besondere an ihnen ist. Bei anderen Funktionen verhält es sich dann genauso.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 14

Ermittle die Lösung der Aufgabe! © Stephanie Hofschlaeger PIXELIO www.pixelio.de

Bereits bei dem Stoffgebiet Terme kann in Mathe immer schon eine Textaufgabe/Sachaufgabe als Aufgabe gelöst werden müssen. Hierbei ist es auch möglich, dass diese Textaufgabe/Sachaufgabe bereits aus mehren Teilen besteht – wie das später bei komplexeren Mathematik-Problematiken die Regel ist. Für jeden einzelnen Teil gibt es dann Punkte – oder auch nicht. So ist das. Beim Lösen von Textaufgaben/Sachaufgaben sollte man sich immer vor Augen führen, dass hier das Lesen zentral ist, d. h. auch die Lesegeschwindigkeit. Daher sollte man eine Textaufgabe/Sachaufgabe zuerst immer langsam lesen, damit man deren Inhalt versteht – und deren zur Lösung der Aufgabe relevanten Wörter. Da ein einmaliges Lesen normalerweise nicht ausreicht, sollte man auch eine Textaufgabe/Sachaufgabe immer mehrmals lesen.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 9

Umformung und Berechnung von Termen © Sven Dovermann PIXELIO www.pixelio.de

Mittels Termumformungen erhält man in der Regel eine Vereinfachung eines Terms. Das hat ja auch einen Sinn. Schließlich möchte man durch Termumformungen beispielsweise die Lösung einer Gleichung ermitteln oder eine binomische Formel von der unaufgelösten Form in die aufgelöste Form bringen. Termumformungen basieren hierbei auf algebraischen Grundregeln. Wendet man diese algebraischen Grundregeln bei Termen korrekt an, so verändert man den Wert des Terms nicht. In der Sprache der Mathematik nennt man das Wertgleichheit. Wertgleiche Terme bleiben mittels algebraischer Umformung weiterhin wertgleich. Wichtig ist es, alle Regeln zur Vereinfachung eines Terms sehr gut zu verinnerlichen. Umso mehr verliert Mathe dann auch seinen Schrecken. Schließlich geht es ja immer und immer wieder in diesem Fach um Umformungen von Termen!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 6

Ein Beispiel für zwei Lösungen einer quadratischen Gleichung

Eine quadratische Gleichung hat ja als Lösungen entweder zwei Lösungen, eine Lösung oder keine Lösung. Fast bis zum Erbrechen überprüft man dies rechnerisch bei unzähligen quadratischen Gleichungen. Das hat auch mit den verschiedenen rechnerischen Lösungsverfahren zu tun, die man hier immer auch anwenden muss – und beim Lösen der quadratischen Gleichungen mitlernt. So weiß man, dass man die p-q-Formel und das quadratische Ergänzen jeweils zum rechnerischen Lösen einer quadratischen Gleichung heranziehen kann. Ebenso wissen ältere Semester, dass das auch über die sogenannte Mitternachtsformel funktioniert. Aufgrund des vielen Rechnens vergisst man hierbei aber, dass man jede quadratische Gleichung auch zeichnerisch lösen kann. Zugegebenermaßen ist das zwar mühsamer und ungenauer als die rechnerischen Lösungsverfahren – aber es bringt einem noch einmal entschieden den Aufbau quadratischer Gleichungen näher.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 2

Eine “zuckersüße“ Gleichung © S. Hofschlaeger PIXELIO www.pixelio.de

Es gibt in Mathe eine Unzahl verschiedener Arten von Gleichungen. Das liegt an den großen Variationsmöglichkeiten von Termen. Eine Gleichung besteht ja aus Termen. Da ein einziger Term selbst wiederum sehr unterschiedliche Mathematik-Zeichen vorweisen kann, entstehen hierdurch jede Menge verschiedenartiger Gleichungen. Neben den Grundrechenarten, der Addition, der Subtraktion, der Multiplikation und der Division, kann ein Term auch Potenzen und Wurzeln vorweisen – und noch einiges mehr an Mathe-Verknüpfungen. Verschiedenartige Gleichungen kann man aber auch sehr gut veranschaulichen, wenn man eine Gleichung zur Funktion macht und sich den Graphen der Funktion anschaut. Dann sieht man nämlich große Unterschiede in dem Verlauf einer Funktion. Eine lineare Funktion, die auf einer linearen Gleichung basiert, ist z. B. eine Gerade, eine quadratische Funktion, die auf einer quadratischen Funktion basiert, ist hingegen eine Parabel.