Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zum Prozentrechnen, Teil 1

Preisnachlasswahnsinn in Prozent © Tony Hegewald PIXELIO

www.pixelio.de Ein nicht allzu schweres Mathe-Stoffgebiet stellt das Prozentrechnen dar. Schließlich basiert es zum einen nur auf der Multiplikation und Division, zum anderen dreht es sich stets um drei Begriffe – wobei der gesuchte Begriff stets mittels einer Mathematik-Formel berechnet werden kann. Daher ist das Prozentrechnen auch für Nicht-Mathe-Fans eine jederzeit zu bewältigende Hürde.

Die drei Begriffe, um die das Prozentrechnen kreist, sind hierbei der Grundwert G, der Prozentwert W und der Prozentsatz p %. Die drei Formeln zur Berechnung des jeweils gesuchten Begriffs setzen sich wie folgt zusammen:

G = [latexpage] $\frac{W\ {\cdot}\ 100}{p}$;              W = [latexpage] $\frac{G\ {\cdot}\ p}{100}$;              p = [latexpage] $\frac{W\ {\cdot}\ 100}{G}$

Kategorien
Mathematik

Das Shakehands/Anstoß-Problem

Shakehands © Alexander Klaus PIXELIO www.pixelio.de

Jedes Jahr stehen Familienfeierlichkeiten an. Das ist zweifelsohne sehr schön. Im trauten Kreis der Familie verbringt man schließlich am liebsten seine Zeit, da es viel zu Plaudern und Essen gibt und jede Menge anderweitige Gemeinschaftsaktivitäten gemacht werden. Daher ist die Freude allseits groß, wenn ein Familientreffen im Gange ist. Doch gerade hierbei Anwesende Mathematik- und Rätsel-Begeisterte können oftmals noch nicht gleich die entspannte Familienrunde genießen, da ihnen das Händeschütteln aller Familienmitglieder wiederum Kopfzerbrechen bereitet. Wie bei jedem Familientreffen lässt es nämlich den hier dabei seienden Jung- und Alt-Mathematikern und Jung- und Alt-Rätselfreunden erneut keine Ruhe, nicht genau zu wissen, wie hoch die genaue Anzahl der Familien-Shakehands dieses Mal ist. Deshalb ist auch immer ein vielfaches Getuschel zu hören, da die Mathematik-Begeisterten die Meinung vertreten, dass es für die genaue Shakehands-Anzahl  eine Mathe-Formel gäbe, die Rätsel-Freunde hingegen jedoch der Auffassung sind, dass das Handschüttel-Problem ein immerwährendes Rätsel sei, das deshalb stets nur über ein genaues Abzählverfahren gelöst werden könne.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu Ungleichungen, Teil 1


Ungleiche Verhältnisse zwischen Chef und Arbeiter © Dr. Klaus-Uwe Gerhardt PIXELIO www.pixelio.de

Neben Gleichungen gibt es in Mathematik noch sogenannte Ungleichungen. Wie der Name es schon vermuten lässt, unterscheiden sich hierbei Ungleichungen offenbar fundamental von Gleichungen, da die Vorsilbe „un“ im Deutschen immer eine Negation ausdrückt – und das demzufolge hier auch der Fall ist. Daher sind Ungleichungen definitiv keine Gleichungen – aber auch nicht komplett das Gegenteil davon.

Der zentrale Unterschied ist im Prinzip das Zeichen, das bei Ungleichungen auftritt. Denn bei einer Ungleichung wird normalerweise entweder ein „>“/„größer als“ oder ein „<“/„kleiner als“ verwendet anstatt wie bei einer Gleichung ein „=“/„gleich“. Dadurch gibt es auch im Gegensatz zu einer Gleichung niemals als Lösungsmenge eine einzige Lösung.

Bei der Ermittlung der Lösungsmenge gibt es aber eine signifikante Übereinstimmung zu Gleichungen. Sowohl Gleichungen als auch Ungleichungen löst man nämlich primär über Äquivalenzumformungen. Weiß man daher wie Äquivalenzumformungen in Mathe richtig gemacht werden, so kann man im Prinzip auch schon Ungleichungen lösen. Das ist doch super, so ökonomisch für die grauen Zellen kann nämlich Mathe auch sein!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 2

Mitternacht © Simone Hainz PIXELIO www.pixelio.de

Wenn ehemalige Schülerinnen und Schüler zu einer ganz bestimmten späteren Uhrzeit an Mathematik denken müssen – dann hat dies meist einen bestimmten Grund: Sie erinnern sich der großen Wichtigkeit einer Formel aus ihrem damaligen Mathe-Unterreicht – und zwar an die sogenannte Mitternachtsformel. Jeder, der früher Abitur gemacht hat, musste sich nämlich von seinem Mathe-Lehrer immer wieder gebetsmühlenartig anhören: „Diese Formel ist so wichtig, dass ihr sie sogar zu Mitternacht (und natürlich auch noch zu späterer Stunde 😉 ) auswendig vorsagen können müsst (und das, egal, wie euer geistiges und körperliches Befinden zu dieser Uhrzeit gerade ist 😉 )!“ Die Ergänzungen in der Klammer sind natürlich von mir spaßeshalber hinzugefügt worden, die Aussage des Lehrers entspricht jedoch einer wortwörtlichen Wiedergabe aus dem Mathe-Unterricht der Jahrzehnte vor dem 21. Jahrhundert. Denn noch vor der Schulreform und der damit einhergehenden Reform des Mathematik-Unterrichts hatte die Mitternachtsformel, mit der man die Lösungsmenge jeder quadratischen Gleichung der Form ax² + bx + c = 0 (a, b, x ∈ von und a ≠ 0) bestimmen kann, einen extrem hohen Stellenwert. Inzwischen sieht das jedoch fundamental anders aus!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 1

Nachdenklich den Mathe-Unterricht verfolgend © Xenia Kehnen PIXELIO www.pixelio.de

Hat man gedacht: „Zum Glück habe ich das Mathe-Stoffgebiet lineare Gleichungen (und Funktionen) endlich hinter mir“, so muss man beim nächsten darauf aufbauenden sicherlich ordentlich Schlucken – quadratische Gleichungen (und Funktionen). Denn der Schwierigkeitsgrad bei diesem Stoffgebiet ist auch um einiges höher im Vergleich zu linearen Gleichungen und Funktionen. Das liegt an der höheren Potenz, dem „hoch 2″, das eine Variable bei einer quadratischen Gleichung (und Funktion) immer vorweist. Jetzt könnte aber ein mitdenkender Schüler entgegenhalten: „Da ja gegenüber linearen Gleichungen (und Funktionen) die Potenz nur um eins zunimmt, kann doch an sich der Schwierigkeitsgrad nicht enorm viel höher sein!“ Hier ist zu entgegnen: „Das stimmt auch an sich, dass diese Gleichungen (und Funktionen) für einen in Mathe nicht auf den Kopf gefallenen Schüler kein allzu großes Problem darstellen, da die Verkomplizierung zu linearen Gleichungen (und Funktionen) sich auch in Grenzen hält.“