Kategorien
Gleichungen Mathe Mathematik Nachhilfe Potenzen Rechenoperationen Terme

Auftretende Fehler bei Potenzen

Fehler bei Rechnung in Mathematik © Gaby Stein / PIXELIO

Mit Potenzen wird man in Mathematik seine ganze Schulzeit konfrontiert. Umso wichtiger ist es daher, dass man weiß, was man tut, wenn man in Aufgaben mit Potenzen konfrontiert wird.

In der Grundschule geht es zunächst darum, Potenzen aus besonderen Malaufgaben abzuleiten. Hier übt man intensiv die Multiplikation und die Potenzschreibweise. Später in der Sekundarstufe I lernt man Schritt für Schritt verschiedene Potenzgesetze kennen (genauer fünf an der Zahl). Die Potenzgesetze sind hierbei nichts anderes als Umformungen eines speziellen Terms, bei dem Potenzen auftreten. Diese treten dann auch noch in sogenannten Bruchtermen auf, wobei man wiederum bestimmte Umformungen bei diesen machen muss. Später in der Sekundarstufe II nehmen Potenzen speziell in der Analysis bei der Differential- und der Integralrechnung wiederum eine signifikante Rolle ein. Leider kann man hierbei von Anfang an auch einiges an Fehlern machen…

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Rechenoperationen

Zauberquadrate

Sternsmileys © S. Hofschlaeger / PIXELIO

Zauberquadrate (auch Magische Quadrate genannt) sollen Kindern helfen, die Addition und die Subtraktion zu üben. Gewöhnlich ist ein Zauberquadrat ein 3×3-Gitter, was 9 Felder hat. Wenn in einer Spalte eine 4, eine 9 und eine 2 darin sind, muss man diese Zahlen zusammenaddieren (siehe Beispiel unten, die erste Spalte). Das Ergebnis ist hierbei 15. Egal ob die Zahlen auch diagonal (schräg), senkrecht (von oben nach unten) oder waagerecht (von links nach rechts) addiert werden, müssen diese dann immer 15 ergeben (die gleiche Summe). Dieses Ergebnis, z. B. hier die 15, nennt man Magische Zahl. Wichtig ist: dass die Zahlen, die zusammenaddiert die Magische Zahl ergeben, in einem Zauberquadrat jeweils nur 1-mal vorkommen dürfen, also nicht doppelt!

Kategorien
Mathe Mathematik Nachhilfe Natürliche Zahlen Rechenoperationen Römische Zahlen Zahlen

Römische Zahlen, Teil 2

Freiheitsstatue in New York © Yvonne Zutavern / PIXELIO

Früher gab es nur Römische Zahlen in unserem Kulturkreis. Erst vor etwa 500 Jahren wurden diese durch die Arabischen Zahlen ersetzt. Dennoch kann man noch heute im Alltag vielfach Römische Zahlen finden, wie z. B. in einem Buch bei einer Zählung von Kapiteln. Aber auch auf der Tafel in der Hand der Freiheitsstatue von New York, dem Wahrzeichen der modernen Demokratie, findet man Römische Zahlen. Dort ist nämlich in Römischen Zahlen das Datum der amerikanischen Unabhängigkeitserklärung zu finden – JULY IV MDCCLXXVI!

Ebenso benutzten Kaiser, Könige und Päpste für ihre Namenskennzeichnung Römische Zahlen. So hieß bspw. der letzte deutsche Kaiser Wilhelm II., der Sonnenkönig Ludwig XIV. und eine Vielzahl von Päpsten besaßen den Namen Leo, versehen mit einer Römischen Zahl. Und alle diese Namensnennungen findet man auch noch überall in zahlreichen Büchern oder im Internet (und auch noch viele andere mit römischen Zahlen versehene)!

Kategorien
Mathe Mathematik Nachhilfe Natürliche Zahlen Rechenoperationen Römische Zahlen Zahlen

Römische Zahlen, Teil 1

Römische Zahlen auf einer Uhr © Rike / PIXELIO

Die alten Römer benutzten die Römischen Zahlen. Bis ins Mittelalter hinein wurden diese zum Rechnen verwendet. Es gibt aber auch heute noch Römische Zahlen zu sehen, zum Beispiel auf Uhren oder alten Häusern. Da man mit den Römischen Zahlen weder multiplizieren, dividieren oder andere höhere Rechenarten machen kann, sind die römischen Zahlen sehr unpraktisch. Die Arabischen Zahlen (unsere Zahlen) sind dagegen sehr praktisch. Mit ihnen fällt das Rechnen einem viel, viel leichter.

Bei den Römischen Zahlen gab es folgende Zahlzeichen in Bezug zu den Arabischen Zahlen (eine Römische Zahl entspricht hierbei einer Arabischen Zahl):

I = 1; V = 5; X = 10; L = 50; C = 100; D = 500; M = 1000.

Kategorien
Dreisatz Grundrechenarten Mathe Mathematik Nachhilfe Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zum Dreisatz, Teil 2

Bio-Eier in idyllischer Umgebung © M. Großmann / PIXELIO

Proportional ist ein sehr wichtiges Wort in der Mathematik. Vielen Aufgaben in Mathe liegen nämlich sogenannte proportionale Zuordnungen zugrunde. Was bedeutet aber das Wort proportional genau? Am einfachsten kann man sich das mittels eines Vergleichs vor Augen führen, zum Beispiel bei einem Produkt aus dem Supermarkt. 6 Bio-Eier (natürlich Freilandhaltung) kosten dort beispielsweise 2,10 €. 12 Bio-Eier kosten dann – 4,20 € (also doppelt so viel). Es liegt schließlich eine proportionale Zuordnung vor, d. h. die zugeordneten Größen (hier Bio-Eier → Preis) stehen in einem gleichen Verhältnis zueinander. Das ist sehr praktisch. So kann man schließlich über den sogenannten Dreisatz, der auf proportionalen Zuordnungen fußt, jegliche beliebe Zuordnung berechnen – wie beispielsweise 1 Bio-Ei kostet (wenn man es einzeln im Supermarkt kaufen könnte) oder 105 usw.