Kategorien
Mathe Mathematik Nachhilfe Symmetrien

Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 2

Die Flagge von Costa Rica an einer Schule © Dieter Schütz PIXELIO www.pixelio.de

Im Alltag gibt es immer mal wieder vorkommende Phänomene aus dem Mathematik-Unterricht. Ein gutes Beispiel hierfür ist die Punktspiegelung. Viele Automarken, noch mehr Flaggen sowie einige Verkehrsschilder sind nämlich punktsymmetrisch. In der Sprache der Mathematik heißt das, dass bei diesen Zeichen oder Symbolen ein Symmetriezentrum M vorliegt, an dem jeder Symmetriepartner mit dem anderen zusammenfällt, und zwar bei einer 180º-Drehung bzw. einer Halbdrehung. Daher kann man bei solchen Zeichen oder Symbolen recht einfach feststellen, ob eine Punktsymmetrie vorliegt. Das Gleiche gilt für das Zeichnen von punktsymmetrischen Punkten oder Flächen in der Mittelstufe in Mathe. Punktsymmetrische Figuren zu zeichnen, ist nämlich kinderleicht. Auf eine andere Art muss man dies dann wiederum in der Oberstufe abrufen, und zwar bei der Analysis. Hier können nämlich punktsymmetrische Funktionen zum Ursprung auftreten. Die Punktspiegelung ist daher auch im Fach Mathe immer mal wieder vorkommend.

Kategorien
Mathe Mathematik Nachhilfe Symmetrien

Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 1

Das Brettspiel Halma © Karin Wuelfing PIXELIO www.pixelio.de

Ohne es oft zu wissen, sind wir um uns herum von Punktsymmetrien umgeben. Der Schilderwald im Straßenverkehr hat vielfach eine punktsymmetrische (und auch achsensymmetrische) Symbolik. Das Gleiche gilt für Spielkarten und Spielflächen sowie im Stile eines englischen Landschaftsgarten angelegte Parkflächen. Aber auch unser Alphabet besteht aus Buchstaben, die eine Punktsymmetrie vorweisen. Wie erkennt man aber diese bzw. wann genau ist etwas punktsymmetrisch? In der Mathematik ist eine Punktsymmetrie nichts anderes als eine Punktspiegelung. Jeder Punkt einer bestimmten Figur wird mittels Halbdrehung (180 º) an einem bestimmten Punkt, dem Symmetriezentrum M, gespiegelt. Ist das bei einer Figur, die man sieht, der Fall, so liegt augenscheinlich eine Punktspiegelung vor.

Kategorien
Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 6

Zwei Klammern © Paul-Georg Meister PIXELIO www.pixelio.de

Übung macht den Meister. Das gilt ganz besonders im Fach Mathe für das Ausmultiplizieren von Termen. Denn gerade beim Ausmultiplizieren passieren häufig Algebra-Fehler, da hierbei einiges beachtet werden muss, nämlich die richtige Anwendung des Distributivgesetzes/Verteilungsgesetzes, der Vorzeichenregel bei Produkten sowie der Potenzgesetze. Die erhöhte Fehlerquelle beim Ausmultiplizieren hat daher ihren Grund, da verschiedene Algebra-Kenntnisse „gleichzeitig“ auftreten – und natürlich eine korrekte Umsetzung erfahren müssen. Noch schwieriger wird das Ganze, wenn das Distributivgesetz/Verteilungsgesetz auf zwei Klammern angewandt werden muss, da dann mehr Terme miteinander algebraisch kombiniert werden müssen. „Fallstricke“ beim Ausmultiplizieren entgeht man daher nur, wenn man zigfach verschiedene solcher Klammern aufgelöst hat – und durch das kontinuierliche Üben schließlich eine „blinde“ Routine entstanden ist. Hierfür muss sich das Distributivgesetz/Verteilungsgesetz gewissermaßen ins Gedächtnis einbrennen.

Kategorien
Binomische Formeln Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 1

Das Abitur – der höchste Schulabschluss in Deutschland © S. Hofschlaeger PIXELIO www.pixelio.de

Eine überaus wichtige algebraische Gesetzmäßigkeit stellen die binomischen Formeln dar, da diese ab der 8. Klasse in Mathe immer wieder vorkommen und somit bis zum MSA oder Abi von Schülerinnen und Schülern stets abgerufen werden können müssen. Daher ist ein gewissermaßen blindes Beherrschen der binomischen Formeln Pflicht. Ansonsten ist ein Algebra-Desaster vorprogrammiert. Denn dann kann man mit hoher Wahrscheinlichkeit auch andere algebraische Umformungen nicht korrekt – wodurch sich der komplette Rechenweg verkomplizieren oder gar im schlimmsten Fall komplett falsch sein kann. Verständlicherweise frustet beides gleich stark – und vergellt einem den Spaß an Mathe gänzlich, da die Note in Mathe dann auch  „im Keller“ beziehungsweise (wie man in Berlin eher sagt) „im Souterrain“ angekommen ist. So weit sollte es in Mathematik aber erst gar nicht kommen!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Satz des Pythagoras Terme

Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 2

Ein Wohnraum mit rechtwinkliger Grundfläche © CarstenWeber PIXELIO www.pixelio.de

In jedem Raum in einem häuslichen Wohnfeld (es sei denn, man wohnt im Dachgeschoss) begegnet man dem Satz des Pythagoras – und das von Zimmer zu Zimmer gleich doppelt. Normalerweise besitzen ja Räume in Wohnungen eine rechteckige Grundfläche und demzufolge auch die Form eines viereckigen Quaders. Jeder viereckige Quader beziehungsweise Raum enthält nun 2-mal den Satz des Pythagoras – auf der Grundfläche in Form der Flächendiagonalen und im Zimmer selbst in Form der Raumdiagonalen. Hat man daher die Länge und die Breite des Raumes gemessen, dann kann man zunächst über den Satz des Pythagoras die Flächendiagonale des Zimmers berechnen und im Anschluss unter Einbeziehung der Raum-Höhe die Raumdiagonale. Die jeweils ermittelten Ergebnisse lassen dann vielleicht das Zimmer größer erscheinen und man bekommt dadurch eventuell ein positiveres Raumgefühl (das war natürlich eher scherzhaft gemeint 🙂 ).