Kategorien
Mathe Mathematik Nachhilfe Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Logarithmen, Teil 1

Ein Rechenschieber zur Bestimmung von Logarithmen © Klicker PIXELIO www.pixelio.de

Zu jeder Rechenoperation gibt es in der Mathematik eine Gegenrechenoperation: Zum Addieren das Subtrahieren, zum Multiplizieren das Dividieren und zum Potenzieren – das Logarithmieren. In Mathe Logarithmen verstehen, geht demzufolge über das Verstandenhaben von Potenzen. Das sollte doch machbar sein! Entscheidend beim Logarithmus ist, dass man sich dieses Wechselverhältnis zu der Potenz immer vor Augen führt: logb y = x   entspricht:    bx = y. Dadurch kann man jeden Logarithmus zu einer Potenz hin umwandeln – und das Ergebnis ermitteln. Ganz am Anfang „fühlen“ sich Logarithmen irgendwie „fremd“ an. Das liegt einfach an der ungewohnten Schreibweise. Je häufiger man diese aber in Potenzen umwandelt, desto „normaler“ fühlen diese sich aber an.

Kategorien
Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Wurzeln, Teil 3




Wurzeln in Mathe sind nicht komisch © gänseblümchen / PIXELIO

Ja, das stimmt! Das ist eher ein lahmer Kalauer! Mit Zähnen und Bäumen in Mathematik „wurzeln“ – hahaha. Leider ist Mathe nicht wie Karneval, wo nahezu alles erlaubt ist! Die Wurzel von Zähnen und die Baumwurzel sind als Karnevalskostüm sicherlich lustig. Die Wurzel in Mathe hat damit aber jedoch rein gar nichts mit zu tun – zumindest was die reale Umsetzung angeht. Kalauern ist hier demzufolge auch sehr fehl am Platze. „Wurzeln“ in Mathematik kann man nämlich nur, wenn man die hierfür bestehenden Wurzelgesetze gut gelernt hat. Das ist auch der Grund, warum bei Klassenarbeiten zu diesem Stoffgebiet der Notendurchschnitt eher im Keller liegt… Und das empfindet dann spätestens eine Schülerin oder ein Schüler bei einer schlechten Mathe-Note – nicht mehr witzig.

Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 5



Die Grundlage der Fortentwicklung (in der Schule und im Leben) – das Lernen © www.einstellungstest-polizei-zoll.de / PIXELIO

„Zähler mal Zähler und Nenner mal Nenner“ – das hat man in Mathe beim Bruchrechnen bei der Multiplikation von Brüchen gelernt. Das ist normalerweise in der Grundschule in der 4. und 5. Klasse der Fall. Hier wird ja das Bruchrechnen von A bis Z durchgenommen. In der 8. Klasse bei speziellen Termen, den Bruchtermen, muss man in Anführungszeichen die Gedächtnisprobe aufs Exempel machen. Denn auch hier gilt wieder bei der Multiplikation von Bruchtermen „Zähler mal Zähler und Nenner mal Nenner“. Hat man die einfache Regel sofort wieder parat, so kann man mit ganz großer Wahrscheinlichkeit diese auch gleich wiederum anwenden. Gelernt ist halt gelernt – daher ist hier die Mathematik im Prinzip wie Fahrradfahren.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 2

Eine “zuckersüße“ Gleichung © S. Hofschlaeger PIXELIO www.pixelio.de

Es gibt in Mathe eine Unzahl verschiedener Arten von Gleichungen. Das liegt an den großen Variationsmöglichkeiten von Termen. Eine Gleichung besteht ja aus Termen. Da ein einziger Term selbst wiederum sehr unterschiedliche Mathematik-Zeichen vorweisen kann, entstehen hierdurch jede Menge verschiedenartiger Gleichungen. Neben den Grundrechenarten, der Addition, der Subtraktion, der Multiplikation und der Division, kann ein Term auch Potenzen und Wurzeln vorweisen – und noch einiges mehr an Mathe-Verknüpfungen. Verschiedenartige Gleichungen kann man aber auch sehr gut veranschaulichen, wenn man eine Gleichung zur Funktion macht und sich den Graphen der Funktion anschaut. Dann sieht man nämlich große Unterschiede in dem Verlauf einer Funktion. Eine lineare Funktion, die auf einer linearen Gleichung basiert, ist z. B. eine Gerade, eine quadratische Funktion, die auf einer quadratischen Funktion basiert, ist hingegen eine Parabel.

Kategorien
Funktionen Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 1

Graphen von Funktionen und andere Darstellungen im Fach Mathematik

Neben Gleichungen sind in Mathe ebenso Funktionen überaus wichtig. Beides bedingt sich ja. Eine Funktion kann ja immer auch mittels einer Gleichung wiedergegeben werden. Eine Funktion weist hierbei immer folgende Merkmale auf: Sie hat eine Definitionsmenge, eine Zuordnungsvorschrift, eine Funktionsgleichung und einen Funktionsterm. Mittels einer Wertetabelle kann oft eine Funktion in ein Koordinatensystem gezeichnet werden. Das Schaubild im Koordinatensystem nennt man Graphen der Funktion. Eine der einfachsten Funktionen ist die erste Winkelhalbierende. Diese hat die Definitionsmenge D = ℝ, die Zuordnungsvorschrift x → x, die Funktionsgleichung y = x und der Funktionsterm ist x. Der Graph dieser Funktion ist eine Gerade. Das alles sollte man bei Funktionen sehr gut verinnerlicht haben, da in der Oberstufe in der Analysis nur Funktionen analysiert werden.