Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zu Gleichungen, Teil 5

Bei Gleichungen in Mathe den algebraisch korrekten Weg einschlagen © M.E. PIXELIO www.pixelio.de

Bei Gleichungen ist es als Erstes zentral, dass man jegliche Produkte richtig ausklammert. Hier ist ganz besonders Acht zu geben auf die geltende Vorzeigenregel. Wichtig ist hierbei aber auch, dass man alle Einzelterme miteinander ausmultipliziert – und keinen vergisst. Ein Vorzeichen nicht korrekt „umwandeln“ oder einen Einzelterm vergessen, passiert nämlich sehr oft. Das ist in Mathe dann immer ein Ausdruck von mangelnder Routine. Aber auch beim Zusammenfassen gleichartiger Einzelterme darf einem kein Fehler passieren. Einzelterme, die den gleichen Buchstaben und die gleiche Potenz vorweisen sowie Zahlen ohne Variable dürfen zusammengefasst werden – alles andere ist algebraisch inkorrekt und daher falsch. Entstehen hier bereits Fehler, so ärgert man sich selbst hierüber am meisten – da diese schlichtweg dumme Fehler sind.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 4

Der beste Lösungsweg für quadratische Gleichungen hängt von der jeweiligen Gleichung ab © S. Hofschlaeger PIXELIO www.pixelio.de

In Mathe bei quadratischen Gleichungen die Lösungsmenge mittels pq-Formel oder quadratischen Ergänzens zu bestimmen, macht nur Sinn, wenn die quadratische Gleichung alle Glieder vorweist. Konkret heißt das: Liegt eine quadratische Gleichung mit einem quadratischen Glied/„ax²“, mit einem linearen Glied/„bx“ und einem absoluten Glied/„c“ vor, dann muss man obige Lösungsverfahren anwenden. Fehlt hingegen mindestens das lineare Glied oder das absolute Glied, dann löst man die quadratische Gleichung immer anders. Auch Ökonomie ist im Fach Mathematik sehr wichtig, da dies eine nicht zu unterschätzende Zeitersparnis mit sich bringt. Je mehr Routine man aber im Lösen von quadratischen Gleichungen hat, desto mehr wird man aber auch automatisch stets das beste Lösungsverfahren, sprich das am ökonomischsten, anwenden.

Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zu Strahlensätzen, Teil 1

Strahlensätze – erste Darstellung

Kommen in Mathe vier Geraden vor, die in ganz bestimmter Beziehung zueinander stehen, so ergeben sich hieraus bestimmte Gesetzmäßigkeiten – die Strahlensätze. Bei den vier Geraden muss hierbei Folgendes gewährleistet sein: Zwei Geraden müssen sich in einem Punkt schneiden, die zwei anderen Gerade müssen parallel zueinander verlaufen und diese beiden Geraden jeweils schneiden. Liegt solch eine Konstellation von vier Geraden vor – dann kann man hieraus die sogenannten Strahlensätze ableiten. Bei den Strahlensätzen handelt es sich hierbei um Ähnlichkeitsverhältnisse zwischen Strecken, die mittels Quotientengleichungen wiedergegeben werden können.

Diese zwei Strahlensätze gibt es:

1. Strahlensatz:

$\frac{\overline{\mathrm{ZA}}}{\overline{\mathrm{ZA}^{\prime}}}$ = $\frac{\overline{\mathrm{ZA}}}{\overline{\mathrm{ZB}^{\prime}}}$     bzw:    

$\frac{\overline{\mathrm{ZA}}}{\overline{\mathrm{AA}^{\prime}}}$ = $\frac{\overline{\mathrm{ZB}}}{\overline{\mathrm{BB}^{\prime}}}$

2. Strahlensatz:

$\frac{\overline{\mathrm{AB}}}{\overline{\mathrm{A}^{\prime}\mathrm{B}^{\prime}}}$ = $\frac{\overline{\mathrm{ZB}}}{\overline{\mathrm{Z}\mathrm{A}^{\prime}}}$

bzw:  

$\frac{\overline{\mathrm{AB}}}{\overline{\mathrm{A}^{\prime}\mathrm{B}^{\prime}}}$ = $\frac{\overline{\mathrm{ZB}}}{\overline{\mathrm{Z}\mathrm{B}^{\prime}}}$

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 2

Ein ärmlich eingerichtetes Klassenzimmer in Brasilien © Gerhard Prantl PIXELIO

In der Realität wird man unentwegt mit Flächen konfrontiert. Schon alleine der Boden, auf dem man sich zuhause bewegt, stellt eine Fläche dar. Die Wände ebenso. Spätestens in der Schule bekommt man ein Flächen-Dé­jà-vu. Dort befindet man sich ja auch in Räumen und diese bestehen ja wie das eigene Zuhause aus Böden und Wänden. Jede ebene Abgrenzung besteht nämlich aus Flächen, die man auch – und nun kommt der Switch zu Mathe – natürlich berechnen kann. In der Mathematik nennt man eine zu berechnende Fläche Flächeninhalt. Die Berechnung des Flächeninhalts hängt hierbei maßgeblich davon ab, um welche Fläche es sich handelt. Mit der richtigen Formel, je nach Vieleck, sollte das aber in Mathe kein großes Problem darstellen, den Flächeninhalt zu berechnen. Genauso verhält es sich übrigens mit dem Umfang. Der Umfang ist ja bei der Fläche deren Begrenzung bzw. „der Weg, den man darum gehen kann“.

Kategorien
Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 1

Zwei parallel verlaufende – dicke – Geraden © RoKnoFoto PIXELIO www.pixelio.de

Die ersten in Mathe dran kommenden Funktionen sind lineare Funktionen.

Diese haben folgende Zuordnungsvorschrift:

x ↦ m · x + n

und diese Funktionsgleichung:

y = m · x + n.

Wie man sieht, weisen lineare Funktionen in der Regel eine Variable/„x“ auf, die die Potenz hoch eins/„x“ bzw. „x¹“ besitzt. Darüber hinaus einen konstanten Wert/„m“, der mit der Variablen verbunden ist. „m“ ist hierbei die Steigung der linearen Funktion. Ebenso besitzen lineare Funktionen oftmals einen zweiten konstanten Wert, nämlich „n“. „n“ wird hierbei als das absolut Glied bezeichnet und ist der Ordinatenabschnitt, also der Schnittpunkt mit der y-Achse. Hat man die Funktionsgleichung einer linearen Funktion gegeben, so kann man diese immer sofort in ein Koordinatensystem einzeichnen. Der Graph der so dargestellten linearen Funktion ist hierbei immer eine Gerade.