Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 2

Der Beste in Mathe © S. Hofschlaeger / PIXELIO

Dass Gleichungen nicht immer so einfach zu lösen sind wie lineare Gleichungen, das kann man bereits bei Bruchgleichungen wahrnehmen. Bruchgleichungen richtig aufzulösen, erfordert nämlich schon eine „gute Portion“ an Algebra-Kenntnissen. Das fällt einem besonders dann auf, wenn man dieses Mathe-Können nicht ganz so gut verinnerlicht hat. Ist das bei einer Schülerin oder einem Schüler der Fall, so sollte einem das aber auch zu denken geben! Gleichungen werden schließlich in Mathe nicht leichter. Ganz im Gegenteil. Bis zur Oberstufe kommen nämlich noch viel, viel schwierigere Gleichungen dran – und müssen, wie das bei vorherigen Gleichungen auch der Fall war, je nach Aufgabenstellung korrekt gelöst werden. Daher darf man in Mathe bei Gleichungen (und Funktionen) nie den Anschluss verlieren! Am besten ist es daher in Mathe immer der Primus (der Beste) oder die Prima (die Beste) zu sein!

Kategorien
Bruchterme Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 7

Mathe-Klausur in der Schule© Klaus-Uwe Gerhardt / PIXELIO

Es gibt für Schülerinnen und Schüler in Mathematik nichts Schlimmeres, als während einer Unterrichtsstunde in Anführungszeichen nur Bahnhof zu verstehen. Ist das bei den anderen Anwesenden in der Klasse gar nicht der Fall, so ist das für einen selbst supersuperunangenehm. Man erachtet sich nämlich sogleich als zu blöd. Für eine sensible Kinderpsyche ist das alles andere als gut. Daher sollte man unbedingt in Mathe aufpassen, dass dieses absolute Negativ-Phänomen möglichst eine Ausnahme bleibt. Ansonsten kann es wirklich schnell der Fall sein, dass man dauerhaft den Anschluss verliert – und im Mathematik-Unterricht nur noch Bahnhof versteht. Bruchterme stellen hierbei häufig ein Stoffgebiet dar, das einem oftmals anfangs Schwierigkeiten bereitet, besonders wenn man in der Grundschule sich beim Bruchrechnen schon schwer getan hat.Der „Bahnhof“ verflüchtet sich auch hier, je mehr Aufgaben man zu diesem Stoffgebiet gelöst hat!

Kategorien
Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Wurzeln, Teil 4

Ein “schreckliches“‘ Tafelbild aus dem Mathematik-Unterricht © bernhard / PIXELIO

Terme, die einem in Mathe Angst machen, sind ein Ausdruck von algebraischer Unsicherheit. Je schwieriger die Terme werden, desto stärker kann daher auch die Verunsicherung steigen – und somit auch der Frust. Das kann einem dann im Nu das ganze Fach Mathematik verleiden. So weit sollte es daher unter keinen Umständen kommen! Terme sollten für einen keine Term-Monster werden. Oft bekommen Schülerinnen und Schüler größere algebraische Schwierigkeiten bei ganz neu aussehenden Term-Gebilden, wie das bei Wurzeln der Fall ist. Das Wurzelzeichen stellt ja auch ein ganz neues und deshalb erst einmal ein gänzlich ungewohntes Zeichen dar. Bei Wurzeln gilt aber das Gleiche wie bei anderen Term-Ausdrücken: Sie verlieren ihren Schrecken – durch Üben, Üben, Üben anhand von Aufgaben.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 9

Umformung und Berechnung von Termen © Sven Dovermann / PIXELIO

Mittels Termumformungen erhält man in der Regel eine Vereinfachung eines Terms. Das hat ja auch einen Sinn. Schließlich möchte man durch Termumformungen beispielsweise die Lösung einer Gleichung ermitteln oder eine binomische Formel von der unaufgelösten Form in die aufgelöste Form bringen. Termumformungen basieren hierbei auf algebraischen Grundregeln. Wendet man diese algebraischen Grundregeln bei Termen korrekt an, so verändert man den Wert des Terms nicht. In der Sprache der Mathematik nennt man das Wertgleichheit. Wertgleiche Terme bleiben mittels algebraischer Umformung weiterhin wertgleich. Wichtig ist es, alle Regeln zur Vereinfachung eines Terms sehr gut zu verinnerlichen. Umso mehr verliert Mathe dann auch seinen Schrecken. Schließlich geht es ja immer und immer wieder in diesem Fach um Umformungen von Termen!

Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 1

Aufeinander aufbauende Mathematik-Stoffgegbiete vereinfacht dargestellt © Stephanie Hofschlaeger / PIXELIO

Bruchterme hat man im Fach Mathe nicht umsonst sehr intensiv gepaukt. Schließlich bilden diese die Grundbausteine von Bruchgleichungen – und späteren gebrochenrationalen Funktionen. Wie man hier augenscheinlich sieht, ist die Mathematik stets aufeinander aufbauend bzw. verschiedene vorherige Stoffgebiete in einem neuen enthalten. Außer Bruchterme muss man nämlich auch bei Bruchgleichungen vor allem Gleichungen gut auflösen können. Beides ist hier bereits nicht mehr sooo leicht. Zum einen sind die Terme, die aufgrund der speziellen Form der Gleichungen auftreten können, teils schon sehr umfangreich, zum anderen muss man bei Bruchgleichungen auch immer den Definitionsbereich bestimmen und diesen mit der Lösung hin abgleichen – und stets aufpassen, dass hier eine Äquivalenzumformung vorliegt.