Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 6




Ein Rucksack mit Mathebuch und anderem Wichtigen für die Grundschule © birgitta hohenester / PIXELIO

Ein Rucksack mit Mathebuch und anderem Wichtigen für die GrundscDas Kann-ich-doch-bereits-Phänomen gilt bei dem Stoffgebiet Bruchterme nicht nur für die Multiplikation von Bruchtermen, sondern auch für die Division. Aus der Grundschule wissen gelehrige Schülerinnen und Schüler noch, dass bei Brüchen die Division ähnlich funktioniert wie bei der Multiplikation von Brüchen. Es gibt nur einen klitzekleinen Unterschied. Ein Bruch wird mit einem anderen Bruch dividiert, in dem man beim zweiten Bruch den Kehrwert bildet und dann mit dem ersten malnimmt. Das, was für das Bruchrechnen gilt, das gilt nun wiederum auch für Bruchterme. Daher ist das Kann-ich-doch-bereits-Phänomen alles andere als ein Zufall, sondern es liegt einfach an der gleichen Berechnungsweise – und an dem Gutgelernthaben der Multiplikation und Division von Brüchen aus der eigenen Grundschulzeit.

Kategorien
Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Wurzeln, Teil 3




Wurzeln in Mathe sind nicht komisch © gänseblümchen / PIXELIO

Ja, das stimmt! Das ist eher ein lahmer Kalauer! Mit Zähnen und Bäumen in Mathematik „wurzeln“ – hahaha. Leider ist Mathe nicht wie Karneval, wo nahezu alles erlaubt ist! Die Wurzel von Zähnen und die Baumwurzel sind als Karnevalskostüm sicherlich lustig. Die Wurzel in Mathe hat damit aber jedoch rein gar nichts mit zu tun – zumindest was die reale Umsetzung angeht. Kalauern ist hier demzufolge auch sehr fehl am Platze. „Wurzeln“ in Mathematik kann man nämlich nur, wenn man die hierfür bestehenden Wurzelgesetze gut gelernt hat. Das ist auch der Grund, warum bei Klassenarbeiten zu diesem Stoffgebiet der Notendurchschnitt eher im Keller liegt… Und das empfindet dann spätestens eine Schülerin oder ein Schüler bei einer schlechten Mathe-Note – nicht mehr witzig.

Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 5



Die Grundlage der Fortentwicklung (in der Schule und im Leben) – das Lernen © www.einstellungstest-polizei-zoll.de / PIXELIO

„Zähler mal Zähler und Nenner mal Nenner“ – das hat man in Mathe beim Bruchrechnen bei der Multiplikation von Brüchen gelernt. Das ist normalerweise in der Grundschule in der 4. und 5. Klasse der Fall. Hier wird ja das Bruchrechnen von A bis Z durchgenommen. In der 8. Klasse bei speziellen Termen, den Bruchtermen, muss man in Anführungszeichen die Gedächtnisprobe aufs Exempel machen. Denn auch hier gilt wieder bei der Multiplikation von Bruchtermen „Zähler mal Zähler und Nenner mal Nenner“. Hat man die einfache Regel sofort wieder parat, so kann man mit ganz großer Wahrscheinlichkeit diese auch gleich wiederum anwenden. Gelernt ist halt gelernt – daher ist hier die Mathematik im Prinzip wie Fahrradfahren.

Kategorien
Bruchterme Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 4

Fünf Zehntel bzw. gekürzt ein Halb © Franziska Püller PIXELIO www.pixelio.de

Das Erweitern und Kürzen von Brüchen ist etwas, das man in Mathe bereits in der Grundschule gelernt hat. Man erweitert einen Bruch mit dem sogenannten Erweiterungsfaktor und man kürzt einen Bruch mit dem sogenannten Kürzungsfaktor. Hat man das Erweitern und Kürzen von Brüchen im Fach Mathematik einmal verstanden, so kann man sein einst erworbenes Können bei Bruchtermen erneut anwenden. In der Mittelstufe muss man das nämlich erneut bei dem Stoffgebiet Bruchterme abrufen können. Und je besser man das damals verinnerlicht hatte, desto leichter wird man es hier dann richtig reproduzieren können. Darüber hinaus kommen hier noch des Öfteren algebraische Grundkenntnisse wie das Ausklammern/Faktorisieren zum Zuge – was man aber auch bereits vorher in Mathe gelernt hat.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Rechenoperationen Satz des Pythagoras Terme

Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 3

“Antikes Mathematik-Rechengerät“ © Dieter Schütz PIXELIO www.pixelio.de

Die Mathematik ist etwas sehr altes. Bereits in der Antike beschäftigten sich Menschen damit. Als Schülerin und Schüler weiß man das natürlich oft nicht. Warum auch? Mathe-Gesetze „fühlen“ sich eh zeitlos an! Daher ist beispielsweise der Satz des Pythagoras auch noch in 500 Millionen Jahren gültig – und darüber hinaus. Dennoch müssen Menschen erst auf solch eine Mathe-Gesetzmäßigkeit stoßen, was bei dem Satz des Pythagoras schon superlange her ist. Denn bereits im 6. Jahrhundert vor Christus stieß angeblich Pythagoras auf die nach ihm benannte sehr berühmte Gesetzmäßigkeit. Heute weiß man aber, dass auch schon vor ihm Babylonier und Ägypter diese Gesetzmäßigkeit kannten. In der Schule beim Satz des Pythagoras bekommt man daher spätestens einen Begriff davon, wie alt die Mathematik doch ist…