Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungssystemen, Teil 3

Das Passende in das Andere einsetzen © RainerSturm PIXELIO www.pixelio.de

Neben dem Gleichsetzungsverfahren lernt man in Mathe noch ein weiteres Lösungsverfahren für lineare Gleichungssysteme kennen: das Einsetzungsverfahren. Im Gegesatz zum Gleichsetzungsverfahren setzt man hier nicht beide Gleichungen gleich, sondern setzt eine Gleichung in die andere Gleichung ein – daher der Name Einsatzungsverfahren. Das geht natürlich nur, wenn man die einzusetzende Gleichung nach einer Variablen (x oder y) hin separiert hat. Ebenso kann man die einzusetzende Gleichung nach einem Vielfachen der Variablen (z. B. 2x, 3y usw.) hin umformen – vorausgesetzt natürlich, dass dieses Vielfache der Variable (z. B. 2x, 3y usw.) auch bei der Gleichung, in der man die dergestalt aufgelöste Gleichung einsetzt, dort auch haargenau so vorhanden ist. Den Rest kennt man dann bereits. Die daraufhin nur noch eine Variable vorweisende Gleichung löst man nach dieser Unbekannten hin auf. Das Ergebnis setzt man in eine der beiden Ursprungsgleichungen ein und ermittelt hierdurch das zweite Lösungspaar des linearen Gleichungssystems.

Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zum Dreisatz, Teil 1

Kapitalanlage Eigenheim © Michael Grabscheit PIXELIO www.pixelio.de

Häuslebauer, Kapitalanleger und Sparfüchse greifen für ihre geldlichen Angelegenheiten häufig auf eine Mathe-Gesetzmäßigkeit zurück: auf den Dreisatz. Das liegt nicht daran, dass diese Personengruppen ein besonderes Faible für Mathematik haben und insbesondere für den Dreisatz. Hierfür gibt es zweierlei andere – ganz simple – Gründe. Der Dreisatz ist alles andere als kompliziert und bei Geld-Dingen, denen oft proportionale Verhältnisse zugrunde liegen, jederzeit anwendbar. Daher ziehen ihn „Geldoptimierer“ gerne und oft heran, um einen genauen Überblick über ihre geldlichen Angelegenheiten zu bekommen. Ein proportionaler Zuwachs an Geld oder eine proportionale Abnahme bei einem Rabatt oder einer ähnlichen Verbillungsmaßnahme von Produkten/Waren kann mittels des Dreisatzes im Nu ermittelt werden – und Häuslebauer, Kapitalanleger und Sparfüchsen ein emotionales Tageshoch bescheren.

Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungssystemen, Teil 2

Das X – die am häufigsten vorkommende Variable in Mathe © schubalu PIXELIO www.pixelio.de

Ein Lösungsverfahren für lineare Gleichungssysteme (LGS) stellt das Gleichsetzungsverfahren dar. Wie der Name es schon vermuten lässt, werden hier die beiden Gleichungen miteinander gleichgesetzt. Damit man dies in Mathe bei zwei Gleichungen durchführen kann, müssen vorher die beiden Gleichungen jeweils nach der GLEICHEN Variablen hin aufgelöst werden. Entweder nach x, nach y oder einem gleichen Faktor von x oder y. Darauf löst man diese Gleichung, wie man das bereits gelernt hat, nach der Variablen hin auf. Das Ergebnis ist eine Lösungskoordinate des LGS. Die zweite Lösungskoordinate des linearen Gleichungssystems ermittelt man, indem man die erste Lösungskoordinate in eine der beiden Ursprungsgleichungen einsetzt und diese Gleichung wiederum nach der Variablen hin auflöst. Beide Lösungskoordinaten bilden schließlich die Lösungsmenge des LGS.

Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 9

Umformung und Berechnung von Termen © Sven Dovermann PIXELIO www.pixelio.de

Mittels Termumformungen erhält man in der Regel eine Vereinfachung eines Terms. Das hat ja auch einen Sinn. Schließlich möchte man durch Termumformungen beispielsweise die Lösung einer Gleichung ermitteln oder eine binomische Formel von der unaufgelösten Form in die aufgelöste Form bringen. Termumformungen basieren hierbei auf algebraischen Grundregeln. Wendet man diese algebraischen Grundregeln bei Termen korrekt an, so verändert man den Wert des Terms nicht. In der Sprache der Mathematik nennt man das Wertgleichheit. Wertgleiche Terme bleiben mittels algebraischer Umformung weiterhin wertgleich. Wichtig ist es, alle Regeln zur Vereinfachung eines Terms sehr gut zu verinnerlichen. Umso mehr verliert Mathe dann auch seinen Schrecken. Schließlich geht es ja immer und immer wieder in diesem Fach um Umformungen von Termen!

Kategorien
Mathe Mathematik Nachhilfe Symmetrien

Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 2

Die Flagge von Costa Rica an einer Schule © Dieter Schütz PIXELIO www.pixelio.de

Im Alltag gibt es immer mal wieder vorkommende Phänomene aus dem Mathematik-Unterricht. Ein gutes Beispiel hierfür ist die Punktspiegelung. Viele Automarken, noch mehr Flaggen sowie einige Verkehrsschilder sind nämlich punktsymmetrisch. In der Sprache der Mathematik heißt das, dass bei diesen Zeichen oder Symbolen ein Symmetriezentrum M vorliegt, an dem jeder Symmetriepartner mit dem anderen zusammenfällt, und zwar bei einer 180º-Drehung bzw. einer Halbdrehung. Daher kann man bei solchen Zeichen oder Symbolen recht einfach feststellen, ob eine Punktsymmetrie vorliegt. Das Gleiche gilt für das Zeichnen von punktsymmetrischen Punkten oder Flächen in der Mittelstufe in Mathe. Punktsymmetrische Figuren zu zeichnen, ist nämlich kinderleicht. Auf eine andere Art muss man dies dann wiederum in der Oberstufe abrufen, und zwar bei der Analysis. Hier können nämlich punktsymmetrische Funktionen zum Ursprung auftreten. Die Punktspiegelung ist daher auch im Fach Mathe immer mal wieder vorkommend.