Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 1

Nachdenklich den Mathe-Unterricht verfolgend © Xenia Kehnen PIXELIO www.pixelio.de

Hat man gedacht: „Zum Glück habe ich das Mathe-Stoffgebiet lineare Gleichungen (und Funktionen) endlich hinter mir“, so muss man beim nächsten darauf aufbauenden sicherlich ordentlich Schlucken – quadratische Gleichungen (und Funktionen). Denn der Schwierigkeitsgrad bei diesem Stoffgebiet ist auch um einiges höher im Vergleich zu linearen Gleichungen und Funktionen. Das liegt an der höheren Potenz, dem „hoch 2″, das eine Variable bei einer quadratischen Gleichung (und Funktion) immer vorweist. Jetzt könnte aber ein mitdenkender Schüler entgegenhalten: „Da ja gegenüber linearen Gleichungen (und Funktionen) die Potenz nur um eins zunimmt, kann doch an sich der Schwierigkeitsgrad nicht enorm viel höher sein!“ Hier ist zu entgegnen: „Das stimmt auch an sich, dass diese Gleichungen (und Funktionen) für einen in Mathe nicht auf den Kopf gefallenen Schüler kein allzu großes Problem darstellen, da die Verkomplizierung zu linearen Gleichungen (und Funktionen) sich auch in Grenzen hält.“

Kategorien
Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 1

Aufmalen der Variable X © Claudia Hautumm / PIXELIO

Überall, wo im Fach Mathe eine Unbekannte beziehungsweise in der Sprache der Mathematik gesprochen eine Variable vorkommt, findet man einen Term vor. Dieses ist nämlich sein Haupterkennungsmerkmal. Das Schwierige hierbei ist aber nicht, einen Term zu erkennen, sondern sein entscheidendes Charakteristikum auch richtig zu verstehen. Denn was bedeutet denn eine auftretende Variable in einem Term? Einen klaren Aufschluss hierzu gibt die Ursprungsbedeutung des Wortes „Variable“. Ein Variabel-Sein heißt nämlich nichts anderes als ein Nicht-genau-Festgelegtsein. Daher kann in die Variable eines Terms immer jede x-beliebige Zahl eingesetzt werden. Schließlich bezieht sich das Variabel- beziehungsweise Nicht-genau-Festgelegtsein auf eine konkrete Zahl.

Kategorien
Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Statistik, Teil 2

Weiterer schulischer Weg © Dieter Schütz / PIXELIO

Ich bin nur Durchschnitt“ ist in unserer leistungsorientierten Gesellschaft eine negative Äußerung. Aber warum? Offenbar verhält es sich so, dass man mit einer durchschnittlichen Leistung etwas nicht wirklicht „gut“ macht beziehungsweise „gut“ kann. Aber ist demzufolge ein Durchschnittlichsein gleichzusetzen mit Mittelmäßigkeit? Die Antwort hierzu ist ein klares Nein. Denn Durchschnittlichkeit ist nicht an sich etwas Schlechtes. Wie eigentlich immer im Leben kommt es auch bei der Aussage „Ich bin nur Durchschnitt“ nämlich darauf an, auf was genau sie sich bezieht, das heißt auf die „Qualität“ des Durchschnittswertes. Je besser nämlich alle bei etwas Bestimmten sind, desto höher und „qualitativer“ ist das Durchschnittsergebnis – und umgekehrt. Daher lässt man am besten die Mathematik darüber entscheiden, ob man selbst wirklich Durchschnitt ist oder nicht. Da schließlich der Durchschnitt in Mathe immer ganz genau bestimmt werden kann, kann man hier auch stets augenscheinlich sehen, ob bei einer angeblichen Mittelmäßigkeit auch wirklich eine Mittelmäßigkeit vorliegt.

Kategorien
Grundrechenarten Mathe Mathematik Nachhilfe Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zum Umrechnen von Größen, Teil 1

Kalender für das Jahr 2013 © casiocan / PIXELIO

Damit man überhaupt die Größen Länge, Gewicht, Zeitdauer, Fläche und Rauminhalt (Volumen) umrechnen kann, muss man jeweils die verschiedenen im Schulfach Mathematik relevanten Maßeinheiten zu jeder einzelnen Größe kennen und die Umrechnungszahl zur nächst größeren oder kleineren Maßeinheit – und das am besten der Reihe nach. Um sich die Reihenfolge der Maßeinheiten am leichtesten merken zu können, sollte man diese entweder von der kleinsten aufwärts oder von der größten abwärts lernen. Gedanklich kann man dadurch die „Maßeinheiten-Stufenleiter“ ohne Lücke schnell hinaufgehen oder hinabgehen – so dass man dann bei späteren Umrechnungen nicht mehr so leicht ins „Wanken“ gerät.

Kategorien
Grundrechenarten Mathe Mathematik Nachhilfe Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Größen, Teil 1

Ausgewachsener Adler © Günther Alois / PIXELIO

Wie man auf beiden Bildern schön sehen kann, erfreuen sich hier ein ausgewachsener Adler und ein Adler-Baby des Lebens. Während nun ein Adler-Baby noch sehr klein ist, besitzt ein ausgewachsener Adler eine imposante Größe und eine eindrucksvolle Erscheinung. Deswegen wurde der Adler, der poetisch Aar heißt, auch zum Wappentier unseres Landes.