Kategorien
Gleichungen Mathe Mathematik Nachhilfe Rechenoperationen Satz des Pythagoras Terme

Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 4

Der Satz des Pythagoras © S. Hofschlaeger / PIXELIO

Bei einem rechtwinkligen Dreieck gilt der Satz des Pythagoras. Demzufolge gilt diese sehr berühmte Gesetzmäßigkeit nicht, wenn kein rechtwinkliges Dreieck vorliegt. Ist nun ein rechtwinkliges Dreieck gegeben, dann weist solch ein Dreieck immer eine Hypotenuse und zwei Katheten auf. Was ist aber was? Das ist ganz, ganz einfach – und sollte man deshalb auch nie vergessen. Die Hypotenuse ist immer die Seite im rechtwinkligen Dreieck, die sich gegenüber dem rechten Winkel befindet. Die anderen Seiten sind dann stets die Katheten, da die Hypotenuse ja immer festgelegt ist. Demzufolge ist auch stets klar, wenn man den Satz des Pythagoras an einem beliebigen rechtwinkligen Dreieck aufgestellt, was für eine Gleichung sich ergibt bzw. ergeben muss .

Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 4

Eine lineare Funktion als Graph dargestellt © Honina

Funktionen sind eindeutige Zuordnungen. Das ist ihr Charakteristikum. Ist das bei einer Funktion der Fall, dass eine eindeutige Zuordnung vorliegt, so kann man in Mathe hierzu einen Funktionsterm aufstellen. Dieser Funktionsterm gibt ganz allgemein die Zuordnung wieder. Man kann solch eine eindeutige Zuordnung jedoch nicht nur algebraisch durch einen Term bestimmen, sondern auch graphisch. Eine Funktion kann schließlich immer auch in ein Koordinatensystem eingezeichnet werden und ihr Verlauf sichtbar gemacht werden. Das nennt man den Graph einer Funktion. Daher kann man auch immer sowohl algebraisch als auch mittels eines Koordinatensystems eindeutig sagen, ob wirklich eine Funktion vorliegt – oder nicht. Es gibt in der Mathematik ja nicht nur Funktionen, das heißt, eindeutige Zuordnungen, sondern auch Relationen, uneindeutige Zuordnungen.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 6

Schritt für Schritt © Jan Wattjes / PIXELIO

Bei linearen Ungleichungen gilt es, Schritt für Schritt – wie übrigens auch bei allen Stoffgebieten in Mathe – die Aufgabe zu lösen. Die einzelnen Lösungsschritte sind hierbei natürlich je nach Aufgabe verschieden. Das ist natürlich ebenfalls bei allen Mathematik-Stoffgebieten so! Es gibt aber immer bei jedem Stoffgebiet Standartaufgaben. Daher auch bei linearen Ungleichungen. Eine Standartaufgabe ist hier, dass eine komplette lineare Ungleichung dasteht und man diese lösen muss. Zunächst fasst man alle gleichen Einzelterme rechts und links des Ungleichheitszeichens zusammen. Dann separiert man den Einzelterm mit der Variablen von dem Einzelterm ohne die Variable. Steht schließlich die Variable alleine, d. h. nur mit der Zahl/dem Faktor 1 vor der Variablen, auf einer Seite der Ungleichung und auf der anderen Seite der Einzelterm ohne Variable – dann hat man die lineare Ungleichung gelöst.

Kategorien
Funktionen Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu quadratischen Funktionen, Teil 2

Die Normalparabel

Der bekannteste Graph einer quadratischen Funktion ist die sogenannte Normalparabel. Da es hierfür in Mathe extra eine Schablone gibt, kennt man die Normalparabel normalerweise sehr gut – und deren möglichen Verläufe im Koordinatensystem. Hierfür muss man sich zuvor nur die quadratischen Funktionen genau anschauen. Dann weiß man auch, wo man die Normalparabel im Koordinatensystem einzeichnen muss. Man orientiert sich hierbei an der Funktion y = x². Das stellt die nach oben geöffnete Normalparabel, vom Koordinatenursprung ausgehend, dar. Heißt die Funktion jedoch y = x² + 4, so muss man die Funktion um vier Längeneinheiten nach oben verschieben (entlang der y-Achse). Bei der Funktion y = (x – 4)² um vier Längeneinheiten nach rechts (entlang der x-Achse). Bei der Funktion y = (x – 4)² + 4 um vier Längeneinheiten nach rechts und vier Längeneinheiten nach oben.

Kategorien
Geometrie Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 7

Ein rechteckiger Teppich auf einem Boden © Lupo / PIXELIO

Bei der Berechnung von Flächen (dem Flächeninhalt) bei Vielecken muss man immer auf zwei Aspekte besonders Acht geben. Der erste und wichtigste Aspekt hierbei ist: die Formel zur Berechnung des Flächeninhalts eines Vielecks korrekt anzuwenden. Konkret heißt das beispielsweise: bei einem Dreieck, einem Parallelgramm oder einem Trapez die Werte korrekt in die Gleichung einzutragen. Der zweite wichtige Aspekt hierbei ist: Bevor man die Werte in die Flächeninhalts-Formel einträgt, muss man diese eventuell ALLE auf die gleiche Einheit bringen/umrechnen. Konkret heißt das, dass alle Größen beispielsweise die Einheit cm oder m vorweisen. Eigentlich ist die Berechnung eines Flächeninhalts in Mathe nicht schwer. Dennoch bleibt es ein Mathematik-Stoffgebiet – und deshalb treten hier auch immer (vor allem bei diesen beiden genannten Aspekten) Fehler auf!