Kategorien
Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu Strahlensätzen, Teil 1

Strahlensätze – erste Darstellung

Kommen in Mathe vier Geraden vor, die in ganz bestimmter Beziehung zueinander stehen, so ergeben sich hieraus bestimmte Gesetzmäßigkeiten – die Strahlensätze. Bei den vier Geraden muss hierbei Folgendes gewährleistet sein: Zwei Geraden müssen sich in einem Punkt schneiden, die zwei anderen Gerade müssen parallel zueinander verlaufen und diese beiden Geraden jeweils schneiden. Liegt solch eine Konstellation von vier Geraden vor – dann kann man hieraus die sogenannten Strahlensätze ableiten. Bei den Strahlensätzen handelt es sich hierbei um Ähnlichkeitsverhältnisse zwischen Strecken, die mittels Quotientengleichungen wiedergegeben werden können.

Diese zwei Strahlensätze gibt es:

1. Strahlensatz:

$\frac{\overline{\mathrm{ZA}}}{\overline{\mathrm{ZA}^{\prime}}}$ = $\frac{\overline{\mathrm{ZB}}}{\overline{\mathrm{ZB}^{\prime}}}$     bzw:    

$\frac{\overline{\mathrm{ZA}}}{\overline{\mathrm{AA}^{\prime}}}$ = $\frac{\overline{\mathrm{ZB}}}{\overline{\mathrm{BB}^{\prime}}}$

2. Strahlensatz:

$\frac{\overline{\mathrm{AB}}}{\overline{\mathrm{A}^{\prime}\mathrm{B}^{\prime}}}$ = $\frac{\overline{\mathrm{ZA}}}{\overline{\mathrm{Z}\mathrm{A}^{\prime}}}$

bzw:  

$\frac{\overline{\mathrm{AB}}}{\overline{\mathrm{A}^{\prime}\mathrm{B}^{\prime}}}$ = $\frac{\overline{\mathrm{ZB}}}{\overline{\mathrm{Z}\mathrm{B}^{\prime}}}$

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 2

Ein ärmlich eingerichtetes Klassenzimmer in Brasilien © Gerhard Prantl PIXELIO

In der Realität wird man unentwegt mit Flächen konfrontiert. Schon alleine der Boden, auf dem man sich zuhause bewegt, stellt eine Fläche dar. Die Wände ebenso. Spätestens in der Schule bekommt man ein Flächen-Dé­jà-vu. Dort befindet man sich ja auch in Räumen und diese bestehen ja wie das eigene Zuhause aus Böden und Wänden. Jede ebene Abgrenzung besteht nämlich aus Flächen, die man auch – und nun kommt der Switch zu Mathe – natürlich berechnen kann. In der Mathematik nennt man eine zu berechnende Fläche Flächeninhalt. Die Berechnung des Flächeninhalts hängt hierbei maßgeblich davon ab, um welche Fläche es sich handelt. Mit der richtigen Formel, je nach Vieleck, sollte das aber in Mathe kein großes Problem darstellen, den Flächeninhalt zu berechnen. Genauso verhält es sich übrigens mit dem Umfang. Der Umfang ist ja bei der Fläche deren Begrenzung bzw. „der Weg, den man darum gehen kann“.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 3

Algebra in Mathe © Henry Klingberg / PIXELIO

Liegt in Mathe eine quadratische Gleichung in der sogenannten Normalform vor, das heißt auf diese Art: x² + px + q, dann kann man sofort ohne Probleme deren Lösung(en) ermitteln. Hierfür gibt es ja extra die pq-Formel:

p-q-Formel

Schließlich kann man bei der Normalform den p-Wert und den q-Wert der quadratischen Gleichung sofort ablesen, so dass man daher im Nu mittels der p-q-Formel deren Lösung(en) berechnen kann. Jetzt gilt es die Werte nur noch richtig einzusetzen. Hier muss man aber immer darauf Acht geben, dass speziell sowohl bei einem negativen p-Wert als auch negativen q-Wert die Vorzeichenregel richtig angewendet wird. Konkret heißt das, dass „–“ und „–“ „+“ ergeben, wenn entweder beim Einsetzen in die pq-Formel der p-Wert oder der q-Wert negativ sind.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Gleichungen, Teil 4


Veranschaulichung einer Gleichung – eine gleichgewichtige © Wippe Sabrina Haselbach / Pixelo

Gleichungen nehmen in der Schule in der Mathematik eine große Wichtigkeit ein, da diese untrennbar mit Funktionen verbunden sind. Und Funktionen bzw. später in der Oberstufe das nur um Funktionen kreisende Teilgebiet Analysis sind häufig Prüfungsthema im schriftlichen Mathe-Abitur. Daher sollte man möglichst fit sein bei Gleichungen, dann wird man auch fit sein bei Funktionen – und irgendwann die schriftliche Abschlussprüfung in Mathematik ohne große Probleme Aufgabe für Aufgabe gut meistern.

Das Wichtigste bei Gleichungen sind hierbei die sogenannten Äquivalenzumformungen, das heißt, eine Gleichung dahingehend zu verändern, dass die Aussage/das Wertverhältnis der Ursprungsgleichung/Ausgangsgleichung unverändert bleibt. Hat man das einmal gut verinnerlicht, dann wird man irgendwann auch wissen, wann eine ebenfalls notwendigerweise zu tätigende Umformung bei einer Gleichung KEINE Äquivalenzumformung (wie beispielsweise das Quadrieren) mehr ist.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 2



Justitia © Florentine / PIXELIO

Die Negation von etwas kann es doch nicht geben! Oder doch? Frosch und Nicht-Frosch. Zwerg und Nicht-Zwerg. Husten und Nicht-Husten. Bei Substantiven trifft das bei dem Negationspartikel „nicht“ sowohl als auch zu. Hä? Denn entweder es gibt das eine oder es gibt das eine nicht. Formallogisch gibt es aber beides. Lust und Unlust. Selbstständigkeit und Unselbstständigkeit. Echtheit und Unechtheit. Bei der Vorsilbe „un“, die das Gegenteil von etwas zum Ausdruck bringt, ist das ebenso der Fall. Beide Partikel bringen etwas zum Ausdruck, das das Gegenteil von etwas Bestimmtem ist und deshalb das ursprünglich Gemeinte negiert. Daher ist eine Ungleichung definitiv keine Gleichung!!! Sie ist nämlich eine Nicht-Gleichung bzw. eine Un-Gleichung. Dennoch gibt es in der Mathematik zweifelsohne Ungleichungen. Formallogisch wäre daher nun ein für alle Mal geklärt, dass eine Ungleichung genauso wie alles andere, was ein Negationspartikel als Wortbestandteil hat, zwar das Gegenteil von etwas ist, aber dennoch existiert. Ein Nicht-Mathe-Thema wäre hier auch ein für allemal geklärt. 🙂