Kategorien
Gleichungen Mathe Mathematik Nachhilfe Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 7

Die Kardinalregel bei Ungleichungen!!! © Thommy Weiss / PIXELIO

Die wichtigste Regel in Mathe beim Lösen von Ungleichungen ist (das gilt für lineare Ungleichungen und ebenso für alle anderen Ungleichungen): Bei einer Multiplikation mit einer negativen Zahl oder einer Division mit einer negativen Zahl dreht sich bei der Ungleichung das Ungleichheitszeichen um. Das ist superwichtig, es ist schließlich die Kardinalregel bei Ungleichungen. Macht man also z. B. ein „mal (–5)“ / „· (–5)“ so ändert sich beispielsweise das < hin zu >. Macht man hingegen ein „durch (–4)“ / „: (–4)“ so ändert sich ebenso beispielsweise das > hin zu <. Das sollte man bei Ungleichungen so schnell wie möglich verinnerlichen. Wendet man die Kardinalregel bei Ungleichungen nämlich nicht an – so ist auch die spätere Lösungsmenge definitiv falsch. Wenn man aber geschickt umformt, dann kann man sich einen Wechsel des Ungleichheitszeichens ersparen!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 6

Schritt für Schritt © Jan Wattjes / PIXELIO

Bei linearen Ungleichungen gilt es, Schritt für Schritt – wie übrigens auch bei allen Stoffgebieten in Mathe – die Aufgabe zu lösen. Die einzelnen Lösungsschritte sind hierbei natürlich je nach Aufgabe verschieden. Das ist natürlich ebenfalls bei allen Mathematik-Stoffgebieten so! Es gibt aber immer bei jedem Stoffgebiet Standartaufgaben. Daher auch bei linearen Ungleichungen. Eine Standartaufgabe ist hier, dass eine komplette lineare Ungleichung dasteht und man diese lösen muss. Zunächst fasst man alle gleichen Einzelterme rechts und links des Ungleichheitszeichens zusammen. Dann separiert man den Einzelterm mit der Variablen von dem Einzelterm ohne die Variable. Steht schließlich die Variable alleine, d. h. nur mit der Zahl/dem Faktor 1 vor der Variablen, auf einer Seite der Ungleichung und auf der anderen Seite der Einzelterm ohne Variable – dann hat man die lineare Ungleichung gelöst.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 5

Zwei “ungleiche“ Äpfel © Gitti Moser / PIXELIO

Gegenüber Gleichungen weisen Ungleichungen nicht eine Lösung auf wie z. B. in Form einer Zahl oder mehrerer Zahlen, sondern einen Zahlenbereich. Das hat mit den unterschiedlichen Zeichen zu tun, das Gleichungen („=“) und Ungleichungen („>“, „<“, ebenso das „≥“ und das „≤“) vorweisen. Daduch muss sich ja auch logischerweise ein Unterschied ergeben – und das natürlich ganz besonders bei der Lösung. Bei der Lösungsmenge einer Ungleichung tritt daher auch in der Regel das Ungleichheits-Zeichen wieder auf, da nur so die Lösung der Ungleichung wiedergegeben werden kann. Bei einer Gleichung hingegen ist oftmals die Angabe einer Zahl oder mehrerer Zahlen möglich. Eine oder mehrere Zahlen stehen dann ja für (gleich/„=“) dem Ergebnis der Gleichung.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 4



Zwei “ungleiche“ Wauwaus © Ruby Stein / PIXELIO

Lineare Gleichungen stellen Gleichungen dar, die eine Variable oder mehrere Variablen vorweisen, die die Potenz 1 besitzen wie beispielsweise x + 7 = 0 oder 5x + 3x – 7 = 0. Bei linearen Ungleichungen verhält es sich genauso. Lineare Ungleichungen bestehen immer aus einer Variablen mit der Potenz 1 wie zum Beispiel x + 7 > 0 oder 5x + 3x > 0. Aufgrund des nahezu gleichen Aufbaus zu linearen Gleichungen löst man lineare Ungleichungen auch fast genauso auf. Das ist das Schöne an der Mathematik, es gibt viele Stoffgebiete, die mit einem anderen zusammenhängen. Obzwar man etwas Neues lernt, „fühlt“ sich das dann in Mathe oftmals wie bereits „gelernt“ an.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 3

“Ungleicher“ Stapel von Steinen © twinlili / PIXELIO

Bei Ungleichungen in Mathe ist eine Rechenregel überaus entscheidend! Diese lautet: Immer wenn man bei einer Ungleichung eine Multiplikation oder Division mit einer negativen Zahl durchführt, dann dreht sich das Vorzeichen der Ungleichung um. Hierbei handelt sich um eine Äquivalenzumformung. Alle anderen Lösungsschritte, die zur Lösung der Ungleichung führen, macht man genauso wie man das beim Lösen von Gleichungen bereits gelernt hat. Das ist sicherlich auch der Grund, warum Ungleichungen im Fach Mathematik heutzutage nur noch ein Randthema sind. Kann man nämlich Gleichungen lösen, so kann man auch Ungleichungen lösen – vorausgesetzt man beherzigt die einzige Ausnahme mit dem „Vorzeichen-Wechsel“ bei der Multiplikation und Division von negativen Zahlen.