Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 3

Die Ausnahme bestätigt die Regel(mäßigkeit)© Rudolpho Duba / PIXELIO

Bei Bruchgleichungen gibt es normalerweise immer eine Lösung (in Form einer Zahl). Die Betonung liegt auf normalerweise. Es gibt hier nämlich auch Ausnahmen – wie so oft in Mathe. Eine Ausnahme ist hierbei, wenn die Lösung der Bruchgleichung gleich der Zahl ist, die bei der Definitionsmenge ausgeschlossen worden ist. Dann ist die Lösungsmenge eine leere Menge. Eine weitere Ausnahme stellt dar, wenn alle Variablen sich eliminieren und die sich ergebende Gleichung wahr ist. Dann ist die Lösungsmenge die Menge aller rationalen (ab einer höheren Klassenstufe reellen) Zahlen – ohne die Zahl(en), die bei der Definitionsmenge ausgeschlossen worden sind. Bruchgleichungen sind also – trotz Ausnahmen (bzw. gerade trotz Ausnahmen) – weiterhin logisch. Das muss auch so sein – sie gehören ja auch zur Mathematik.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Ungleichungen

Mathematik-Nachhilfe: Aufgaben zu linearen Ungleichungen, Teil 5

Zwei “ungleiche“ Äpfel © Gitti Moser / PIXELIO

Gegenüber Gleichungen weisen Ungleichungen nicht eine Lösung auf wie z. B. in Form einer Zahl oder mehrerer Zahlen, sondern einen Zahlenbereich. Das hat mit den unterschiedlichen Zeichen zu tun, das Gleichungen („=“) und Ungleichungen („>“, „<“, ebenso das „≥“ und das „≤“) vorweisen. Daduch muss sich ja auch logischerweise ein Unterschied ergeben – und das natürlich ganz besonders bei der Lösung. Bei der Lösungsmenge einer Ungleichung tritt daher auch in der Regel das Ungleichheits-Zeichen wieder auf, da nur so die Lösung der Ungleichung wiedergegeben werden kann. Bei einer Gleichung hingegen ist oftmals die Angabe einer Zahl oder mehrerer Zahlen möglich. Eine oder mehrere Zahlen stehen dann ja für (gleich/„=“) dem Ergebnis der Gleichung.

Kategorien
Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Oberfläche und Volumen von Pyramiden, Gastbeitrag

Oberfläche und Volumen von Pyramiden sind Teil der Raumgeometrie. Wie aber berechnet man das Volumen und die Oberfläche von Pyramiden am unkompliziertesten? Welche Formeln benötigt man dazu und an welcher Stelle muss man mit dem Satz des Pythagoras rechnen? Eine Reihe von Fragen also, die wir im Folgenden beantworten wollen. Ein spezielles Augenmerk dabei werden wir auf die häufigsten Fehler legen, die Schülern in Klassenarbeiten immer wieder unterlaufen und mit welchen Strategien man sie am besten verhindern kann. Sehen wir uns zunächst einmal zwei Pyramiden an:

Schrägbild einer Pyramide

Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 8

“Ich bin keine blöde Kuh“ © Paul Golla / PIXELIO

„Summen kürzen nur die Dummen“, heißt eine früher oft geäußerte Phrase aus dem Mathe-Unterricht. Phrasen bestehen aber oft einfach nur aus Worthülsen. Der Wahrheitsgehalt dieser sprachlichen Ausdrücke ist daher mehr als anzweifelbar. Sie sind nämlich einfach häufig schlichtweg falsch. Der Reim bzw. der sprachliche Laut dominiert bei „Summen kürzen nur …“ den Inhalt. Und der Sinn, der den eigentlichen Satzgehalt dominieren sollte, ist hier mindestens nur zweitrangig. In die sensiblen Psychen von Schülerinnen und Schülern kann sich solch eine Phrase aber sehr schnell einbrennen und man denkt wirklich man ist zu dumm für Mathe – und dann auch gleich noch oft für vieles anderes. Das stimmt aber definitiv nicht! An Brüchen oder Bruchtermen, bei der diese Phrase zum Zuge kommt, kann man die Intelligenz eines Menschen eh nicht MESSEN – im Fach Mathematik auch sowieso überhaupt nicht! Daher gilt wahrheitsgemäß: Nur die Dummen sagen: „Summen kürzen nur die Dummen!“

Kategorien
Gleichsetzungsverfahren Gleichungen Lineare Gleichungssysteme Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungssystemen, Teil 3

Das Passende in das Andere einsetzen © RainerSturm / PIXELIO

Neben dem Gleichsetzungsverfahren lernt man in Mathe noch ein weiteres Lösungsverfahren für lineare Gleichungssysteme kennen: das Einsetzungsverfahren. Im Gegesatz zum Gleichsetzungsverfahren setzt man hier nicht beide Gleichungen gleich, sondern setzt eine Gleichung in die andere Gleichung ein – daher der Name Einsatzungsverfahren. Das geht natürlich nur, wenn man die einzusetzende Gleichung nach einer Variablen (x oder y) hin separiert hat. Ebenso kann man die einzusetzende Gleichung nach einem Vielfachen der Variablen (z. B. 2x, 3y usw.) hin umformen – vorausgesetzt natürlich, dass dieses Vielfache der Variable (z. B. 2x, 3y usw.) auch bei der Gleichung, in der man die dergestalt aufgelöste Gleichung einsetzt, dort auch haargenau so vorhanden ist. Den Rest kennt man dann bereits. Die daraufhin nur noch eine Variable vorweisende Gleichung löst man nach dieser Unbekannten hin auf. Das Ergebnis setzt man in eine der beiden Ursprungsgleichungen ein und ermittelt hierdurch das zweite Lösungspaar des linearen Gleichungssystems.