Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 2

Der Beste in Mathe © S. Hofschlaeger / PIXELIO

Dass Gleichungen nicht immer so einfach zu lösen sind wie lineare Gleichungen, das kann man bereits bei Bruchgleichungen wahrnehmen. Bruchgleichungen richtig aufzulösen, erfordert nämlich schon eine „gute Portion“ an Algebra-Kenntnissen. Das fällt einem besonders dann auf, wenn man dieses Mathe-Können nicht ganz so gut verinnerlicht hat. Ist das bei einer Schülerin oder einem Schüler der Fall, so sollte einem das aber auch zu denken geben! Gleichungen werden schließlich in Mathe nicht leichter. Ganz im Gegenteil. Bis zur Oberstufe kommen nämlich noch viel, viel schwierigere Gleichungen dran – und müssen, wie das bei vorherigen Gleichungen auch der Fall war, je nach Aufgabenstellung korrekt gelöst werden. Daher darf man in Mathe bei Gleichungen (und Funktionen) nie den Anschluss verlieren! Am besten ist es daher in Mathe immer der Primus (der Beste) oder die Prima (die Beste) zu sein!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 8

Der falsche Mathe-Lösungsweg © Tim Reckmann / PIXELIO

Liegt eine reinquadratische Gleichung vor, so kann man diese natürlich auch über die Anwendung der p-q-Formel lösen! Das geht natürlich – das ist aber alles andere als logisch sinnvoll! In Mathe geht es ja auch beim Aufgabenlösen um den möglichst unkomplizertesten und damit auch schnellesten Weg. Neben einer Zeitersparnis ist dieser Weg auch immer mit einem Fehlerverringerungsrisiko verbunden. Ein Musterbeispiel stellt hierfür eine reinquadratische Gleichung dar. Da diese keinen Mittelterm vorweist, kann diese im Nu durch ein Wurzelziehen gelöst werden. Mit der p-q-Formel geht das, wie gesagt, auch, das dauert aber viel, viel länger. Auch besteht hierbei die Gefahr, dass man einen Leichtsinnsfehler macht – und wirklich unnötige und somit wirklich ärgerliche Punkte verliert. Das spiegelt sich ja wiederum in der Mathe-Note wider!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben Trigonometrie am rechtwinkligen Dreieck, Teil 2

Die “Mutter“ aller rechtwinkligen Dreiecke – das Geodreieck © günther gumhold / PIXELIO

Ein schwer auszusprechendes Wort ist sicherlich das Wort Trigonometrie. Bei Berechnungen zu bestimmten Dreiecken tritt es in Mathe das erste Mal auf bzw. wird dann vom Lehrer oder der Lehrerin erstmalig in dem Mund genommen. Die korrekte Aussprache ist hierbei oftmals schwieriger als das an einem rechtwinkligen Dreieck auftretende und dort anfangs thematisierte Mathematik-Phänomen. Wichtig ist hierbei nur, dass man versteht, dass eine Seite IMMER die Hypotenuse ist (nämlich gegenüber dem rechten Winkel). Die anderen beiden Seiten, sprich die Katheten, sind hingegen je nach Blickwinkel ENTWEDER die Gegenkathete oder die Ankathete. Das, was, man dann noch anhand der aufgestellten Gleichung berechnen muss, ist eher trivial bzw. sehr leicht mittels des Taschenrechners auszurechnen.

Kategorien
Bruchterme Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 7

Mathe-Klausur in der Schule© Klaus-Uwe Gerhardt / PIXELIO

Es gibt für Schülerinnen und Schüler in Mathematik nichts Schlimmeres, als während einer Unterrichtsstunde in Anführungszeichen nur Bahnhof zu verstehen. Ist das bei den anderen Anwesenden in der Klasse gar nicht der Fall, so ist das für einen selbst supersuperunangenehm. Man erachtet sich nämlich sogleich als zu blöd. Für eine sensible Kinderpsyche ist das alles andere als gut. Daher sollte man unbedingt in Mathe aufpassen, dass dieses absolute Negativ-Phänomen möglichst eine Ausnahme bleibt. Ansonsten kann es wirklich schnell der Fall sein, dass man dauerhaft den Anschluss verliert – und im Mathematik-Unterricht nur noch Bahnhof versteht. Bruchterme stellen hierbei häufig ein Stoffgebiet dar, das einem oftmals anfangs Schwierigkeiten bereitet, besonders wenn man in der Grundschule sich beim Bruchrechnen schon schwer getan hat.Der „Bahnhof“ verflüchtet sich auch hier, je mehr Aufgaben man zu diesem Stoffgebiet gelöst hat!

Kategorien
Einsetzungsverfahren Gleichsetzungsverfahren Lineare Gleichungssysteme Mathematik

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungssystemen, Teil 2

Das X – die am häufigsten vorkommende Variable in Mathe © schubalu / PIXELIO

Ein Lösungsverfahren für lineare Gleichungssysteme (LGS) stellt das Gleichsetzungsverfahren dar. Wie der Name es schon vermuten lässt, werden hier die beiden Gleichungen miteinander gleichgesetzt. Damit man dies in Mathe bei zwei Gleichungen durchführen kann, müssen vorher die beiden Gleichungen jeweils nach der GLEICHEN Variablen hin aufgelöst werden. Entweder nach x, nach y oder einem gleichen Faktor von x oder y. Darauf löst man diese Gleichung, wie man das bereits gelernt hat, nach der Variablen hin auf. Das Ergebnis ist eine Lösungskoordinate des LGS. Die zweite Lösungskoordinate des linearen Gleichungssystems ermittelt man, indem man die erste Lösungskoordinate in eine der beiden Ursprungsgleichungen einsetzt und diese Gleichung wiederum nach der Variablen hin auflöst. Beide Lösungskoordinaten bilden schließlich die Lösungsmenge des LGS.