Kategorien
Gleichungen Mathe Mathematik Nachhilfe Potenzen Rechenoperationen Terme

Auftretende Fehler bei Potenzen

Fehler bei Rechnung in Mathematik © Gaby Stein / PIXELIO

Mit Potenzen wird man in Mathematik seine ganze Schulzeit konfrontiert. Umso wichtiger ist es daher, dass man weiß, was man tut, wenn man in Aufgaben mit Potenzen konfrontiert wird.

In der Grundschule geht es zunächst darum, Potenzen aus besonderen Malaufgaben abzuleiten. Hier übt man intensiv die Multiplikation und die Potenzschreibweise. Später in der Sekundarstufe I lernt man Schritt für Schritt verschiedene Potenzgesetze kennen (genauer fünf an der Zahl). Die Potenzgesetze sind hierbei nichts anderes als Umformungen eines speziellen Terms, bei dem Potenzen auftreten. Diese treten dann auch noch in sogenannten Bruchtermen auf, wobei man wiederum bestimmte Umformungen bei diesen machen muss. Später in der Sekundarstufe II nehmen Potenzen speziell in der Analysis bei der Differential- und der Integralrechnung wiederum eine signifikante Rolle ein. Leider kann man hierbei von Anfang an auch einiges an Fehlern machen…

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 14

Ermittle die Lösung der Aufgabe! © Stephanie Hofschlaeger / PIXELIO

Bereits bei dem Stoffgebiet Terme kann in Mathe immer schon eine Textaufgabe/Sachaufgabe als Aufgabe gelöst werden müssen. Hierbei ist es auch möglich, dass diese Textaufgabe/Sachaufgabe bereits aus mehren Teilen besteht – wie das später bei komplexeren Mathematik-Problematiken die Regel ist. Für jeden einzelnen Teil gibt es dann Punkte – oder auch nicht. So ist das. Beim Lösen von Textaufgaben/Sachaufgaben sollte man sich immer vor Augen führen, dass hier das Lesen zentral ist, d. h. auch die Lesegeschwindigkeit. Daher sollte man eine Textaufgabe/Sachaufgabe zuerst immer langsam lesen, damit man deren Inhalt versteht – und deren zur Lösung der Aufgabe relevanten Wörter. Da ein einmaliges Lesen normalerweise nicht ausreicht, sollte man auch eine Textaufgabe/Sachaufgabe immer mehrmals lesen.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 13

Ein Gespräch zwischen Termen © Uwe Wagschal / PIXELIO

Was für ein Typ bist du denn?“ Fragt ein Term einen anderen Term. „Ich bin ein Produkt-Term und du?“ „Was denkst du denn?“, erwidert jener. „Da muss ich dich erst einmal genau anschauen, dass ich das ganz genau sagen kann. Einem Moment bitte,“ antwortet dieser (Ein paar Sekunden später) „Du bist eine algebraische Summe.“ „Ja, das stimmt“, entgegnet schließlich der Term dem anderen Term. Gäbe es Gespräche unter Termen, dann könnten viele hiervon tagtäglich so vonstatten gehen. Das Ergebnis, mit welchem Term-Typ man es gerade verbal zu tun hat, würde hierbei natürlich je nach Typ unterschiedlich ausfallen – da ja normalerweise die letzte zu tätigende Rechenoperation den Typ des Terms bestimmt.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Rechenoperationen Satz des Pythagoras Terme

Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 4

Der Satz des Pythagoras © S. Hofschlaeger / PIXELIO

Bei einem rechtwinkligen Dreieck gilt der Satz des Pythagoras. Demzufolge gilt diese sehr berühmte Gesetzmäßigkeit nicht, wenn kein rechtwinkliges Dreieck vorliegt. Ist nun ein rechtwinkliges Dreieck gegeben, dann weist solch ein Dreieck immer eine Hypotenuse und zwei Katheten auf. Was ist aber was? Das ist ganz, ganz einfach – und sollte man deshalb auch nie vergessen. Die Hypotenuse ist immer die Seite im rechtwinkligen Dreieck, die sich gegenüber dem rechten Winkel befindet. Die anderen Seiten sind dann stets die Katheten, da die Hypotenuse ja immer festgelegt ist. Demzufolge ist auch stets klar, wenn man den Satz des Pythagoras an einem beliebigen rechtwinkligen Dreieck aufgestellt, was für eine Gleichung sich ergibt bzw. ergeben muss .

Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 4

Eine lineare Funktion als Graph dargestellt © Honina

Funktionen sind eindeutige Zuordnungen. Das ist ihr Charakteristikum. Ist das bei einer Funktion der Fall, dass eine eindeutige Zuordnung vorliegt, so kann man in Mathe hierzu einen Funktionsterm aufstellen. Dieser Funktionsterm gibt ganz allgemein die Zuordnung wieder. Man kann solch eine eindeutige Zuordnung jedoch nicht nur algebraisch durch einen Term bestimmen, sondern auch graphisch. Eine Funktion kann schließlich immer auch in ein Koordinatensystem eingezeichnet werden und ihr Verlauf sichtbar gemacht werden. Das nennt man den Graph einer Funktion. Daher kann man auch immer sowohl algebraisch als auch mittels eines Koordinatensystems eindeutig sagen, ob wirklich eine Funktion vorliegt – oder nicht. Es gibt in der Mathematik ja nicht nur Funktionen, das heißt, eindeutige Zuordnungen, sondern auch Relationen, uneindeutige Zuordnungen.