Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Quadratische Funktionen Quadratische Gleichungen Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Funktionen, Teil 1

Normalparabel, Geodreieck und Lineal © Claudia Hautumm / PIXELIO

Nach linearen Funktionen werden im Fach Mathematik ausgiebig quadratische Funktionen behandelt. Der Funktionsterm von quadratischen Funktionen weist hierbei immer eine Variable mit der Potenz zwei (x²) auf. Den Graph solcher Funktionen nennt man eine Parabel. Weist eine quadratische Funktion vor dem x² keinen Faktor auf (außer natürlich den Faktor 1 😉 ), ist der Graph der Funktion immer eine sogenannte Normalparabel. Praktischerweise gibt es hierfür extra Normalparabel-Schablonen, mit denen man den Graph in Nullkommanix in ein Koordinatensystem einzeichnen kann. Quadratische Funktionen sind genauso wie linearen Funktionen in Mathe superwichtig. Diese beiden Funktionen bilden die Säulen der späteren Analysis, bei der über ein komplettes Schuljahr Funktionsuntersuchungen auf der Schülerinnen- und Schüler-Agenda stehen. Je besser man hierbei zuvor diese beiden Stoffgebiete verstanden hat, umso leichter fällt einem das „Mathematikfunktionsuntersuchungsschuljahr“.

Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 3

Der Graph einer Betragsfunktion |x|

Funktionen können in der Mathematik immer in einem Koordinatensystem dargestellt werden. Die Darstellung einer Funktion im Koordinatensystem nennt man den Graph der Funktion. Der Graphen einer Funktion kann hierbei einen ununterbrochen durchgängigen Verlauf vorweisen oder auch eine oder mehrere sogenannte Lücken haben. Eine Lücke stellt nämlich eine Stelle an einer Funktion dar, wo die Funktion nicht definiert ist. Bei der Funktionsgleichung einer Funktion kann man das bereits ebenso sehen, ob eine Funktion unterbrochen ist oder nicht. Besteht die Funktion beispielsweise aus einem Bruchterm, so weist deren Verlauf höchstwahrscheinlich eine oder mehrere Lücken auf. Ebenso zeigen sich Lücken bei der Definitionsmenge. Alle Zahlen, die bei der Definitionsmenge einer Funktion ausgeschlossen sind, sind Lücken bei deren Graphen.

Kategorien
Dreisatz Geometrie Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 6

Kalkulation des Eigenheims © Tim Reckmann / PIXELIO

Es soll ja noch vorkommen, dass Menschen hierzulande bauen wollen, sprich ein Eigenheim haben wollen. Um ein Eigenheim zu realisieren, sind sehr, sehr viele Schritte notwendig – die alle wohlweislich geplant sein sollten. Ansonsten droht einem scheller ein finanzielles Fiasko, als man denkt. Ein sehr wichtiger Schritt zur Realisation eines Eigenheimes stellt hierbei der Bauplatz dar. Ein Haus muss ja irgendwo stehen! Oftmals hat man für sein geplantes eigenes Haus keinen Bauplatz – und muss diesen daher erst kaufen. Und hier kommt die Mathematik ins Spiel – sowie viel, viel an Geld. Ein Bauplatz ist ja nichts anderes als eine Fläche, die man berechnen kann. Das Gleiche gilt natürlich für deren Preis!

Kategorien
Mathe Mathematik Nachhilfe Potenzen Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 9

Der Sinn des Lernens © Dieter Schütz / PIXELIO

Nach dem MSA oder dem Abitur hat man oftmals nur noch begrenzt etwas mit Mathe zu tun. Fast alles, was man im Fach Mathematik lernen musste, ist nicht wirklich alltagskompatibel. Das ist aber auch nicht weiter schlimm. Es geht ja auch nicht um die spätere konkrete Anwendung von dem, was man in der Schule lernte – sondern um das Verstehen! Hat man die durchlaufenden Stoffgebiete in Mathe beispielsweise gut VERSTANDEN, so hat man eine anspruchsvolle Geistesleistung vollbracht. Und das ist viel wert. Denn jede Geistesleistung bringt einen im Leben weiter! Das Gleiche gilt natürlich für körperlich vollbrachte Leistungen! Aus diesem Grund ist das, was man im Fach Mathe lernt, alles andere als unwichtig – ebenso das, was man in allen anderen Fächern lernt. Nur so entwickelt man sich POTENT weiter – sein ganzes Leben lang.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 9

Eine “natürliche“ quadratische Ergänzung © olga meier-sander / PIXELIO

Die quadratische Ergänzung zur Lösung einer quadratischen Gleichung kann man in Mathe nicht oft genug üben! Dadurch „brennt“ sich zum einen dieser wichtige Lösungsweg zur Bestimmung der Lösung einer quadratischen Gleichung ein sowie insbesondere die binomischen Formeln. Das Entscheidende bei einer quadratischen Ergänzung stellt hierbei der Mittelterm der 1. oder 2. Binomischen Formel dar. Von diesem ausgehend ergänzt man ja mittels einer Äquivalenzumformung den 3. Einzelterm doppelt – indem man den Mittelterm zuerst durch den ersten Einzelterm der unaufgelösten Form und den Faktor 2 teilt. Darauf quadriert man jenen noch! Deshalb heißt ja in der Mathematik jene Algebra-Umformung quadratische Ergänzung. Hat man jedenfalls einmal den Umformungs-Prozess verstanden, ist die quadratische Ergänzung für Schülerinnen und Schüler ein Klacks.