Kategorien
Geometrie Mathe Mathematik Nachhilfe

Aufgaben zum Umfang und Flächeninhalt von Vielecken, Teil 9

Blütenteppich in ansprechender geometrischer Form © Gabi Schoenemann / PIXELIO

Gerade bei Vielecken und ebenso bei zweidimensionalen Figuren müssen Schülerinnen und Schüler häufig deren Umfang ermitteln. Das sollte eigentlich nicht so schwierig sein (aber ein Selbstläufer ist es auch nicht 😉 )! Die „Wegstrecke“, die man gedanklich bei einem Vieleck oder irgendeiner anderen Figur herumgehen kann, stellt deren Umfang dar. Daher besteht der Umfang auch aus verschiedenen Teilstrecken/Randstrecken, die man allesamt addiert. Normalerweise kommt hierbei eine zweite Berechnungsweise von Vielecken und anderen ebenso zweidimensionalen Figuren zum Zuge, deren Flächeninhalt, da der Umfang häufig mit diesem in Beziehung gesetzt wird.

Kategorien
Geometrie Mathe Mathematik Nachhilfe Prismen

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Prismen, Teil 2

Das Aquarium – ein Prisma für Zierfische © Steve Weißflog / PIXELIO

Bei einem Prisma gilt das Gleiche wie bei einem speziellen Viereck. Es können bestimmte Formeln herangezogen werden, um innerhalb einer Aufgabe die gesuchte Größe exakt zu bestimmen. Ein Prisma ist ja auch ein spezieller Körper, der zwei zueinander parallele und kongruente Flächen vorweist. Ein Quadrat, ein Rechteck, ein Parallelogramm oder eine Trapez sind ebenso ganz spezielle Flächen, die jeweils bestimmte Besonderheiten innerhalb ihrer Fläche haben. Das kann man in Mathe nutzen, indem man bei Prismen und speziellen Vierecken Gesetzmäßigkeiten via Formel wiedergegeben kann. Da Prismen dreidimensionale Körper sind, sind natürlich die hier durchzuführenden Rechenoperationen aber auch etwas schwieriger als bei zweidimensionalen Flächen. So ist nun mal die Mathematik!

Kategorien
Geometrie Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 8

Fußballplatz auf dem Land © Hartmut910 / PIXELIO

Beim Flächeninhalt von Vielecken im Fach Mathematik muss man entweder die Fläche exakt mittels Formel berechnen oder zeichnerisch ermitteln, bei dem wiederum auch eine Rechnung gemacht werden muss. Die zwei Verfahren zum Bestimmen des Flächeninhaltes unterscheiden sich hierbei in ihrer Exaktheit. Die rechnerische Methode ist immer ganz, ganz exakt, die zeichnerische nicht. Interessant hierbei ist aber, dass das zeichnerische Ermitteln des Flächeninhalts realitätskonform ist, sprich ein Abbild der Realität ist, der rechnerische Weg hingegen nicht. Kein Flächeninhalt, den man rein rechnerisch bestimmt, kommt so in der Realität auch 100 % identisch auch so vor. Alle Flächen, die man sieht, sei es Rechtecke, Parallelogramme, Trapeze oder andere Vielecke verlaufen nämlich nicht exakt so wie man sie am Computer (!) zeichnen kann!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Rechenoperationen Satz des Pythagoras Terme

Mathematik-Nachhilfe: Aufgaben zum Satz des Pythagoras, Teil 4

Der Satz des Pythagoras © S. Hofschlaeger / PIXELIO

Bei einem rechtwinkligen Dreieck gilt der Satz des Pythagoras. Demzufolge gilt diese sehr berühmte Gesetzmäßigkeit nicht, wenn kein rechtwinkliges Dreieck vorliegt. Ist nun ein rechtwinkliges Dreieck gegeben, dann weist solch ein Dreieck immer eine Hypotenuse und zwei Katheten auf. Was ist aber was? Das ist ganz, ganz einfach – und sollte man deshalb auch nie vergessen. Die Hypotenuse ist immer die Seite im rechtwinkligen Dreieck, die sich gegenüber dem rechten Winkel befindet. Die anderen Seiten sind dann stets die Katheten, da die Hypotenuse ja immer festgelegt ist. Demzufolge ist auch stets klar, wenn man den Satz des Pythagoras an einem beliebigen rechtwinkligen Dreieck aufgestellt, was für eine Gleichung sich ergibt bzw. ergeben muss .

Kategorien
Geometrie Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 7

Ein rechteckiger Teppich auf einem Boden © Lupo / PIXELIO

Bei der Berechnung von Flächen (dem Flächeninhalt) bei Vielecken muss man immer auf zwei Aspekte besonders Acht geben. Der erste und wichtigste Aspekt hierbei ist: die Formel zur Berechnung des Flächeninhalts eines Vielecks korrekt anzuwenden. Konkret heißt das beispielsweise: bei einem Dreieck, einem Parallelgramm oder einem Trapez die Werte korrekt in die Gleichung einzutragen. Der zweite wichtige Aspekt hierbei ist: Bevor man die Werte in die Flächeninhalts-Formel einträgt, muss man diese eventuell ALLE auf die gleiche Einheit bringen/umrechnen. Konkret heißt das, dass alle Größen beispielsweise die Einheit cm oder m vorweisen. Eigentlich ist die Berechnung eines Flächeninhalts in Mathe nicht schwer. Dennoch bleibt es ein Mathematik-Stoffgebiet – und deshalb treten hier auch immer (vor allem bei diesen beiden genannten Aspekten) Fehler auf!