Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungssystemen, Teil 4

Routine beim Rechnen © teles5 / PIXELIO

Lineare Gleichungssysteme sollte man in Mathe anfangs nach dem Gleichsetzungsverfahren oder dem Einsetzungsverfahren mannigfach lösen. So bekommt man die nötige Routine für das Lösen von Gleichungssystemen an sich und auch ein Auge für das jeweils passende Lösungsverfahren, das am schnellsten zu der gewünschten Lösung führt. Das ist aber nicht das wirklich entscheidende bei diesen beiden Lösungsverfahren. Viel wichtiger ist die Routine beim Lösen. Dann ist man nämlich schließlich auch fit für das eigentlich wichtigste Lösungsverfahren für lineare Gleichungen: das Additionsverfahren (und Subtraktionsverfahren). Das Lösungsverfahren ist schließlich zum einen etwas schwieriger als die anderen beiden, dafür aber auch viel besser geeignet – für komplexere Gleichungssysteme. Bei den anderen beiden wird das dann schnell bei umfangreicheren Gleichungssystemen sehr unübersichtlich und demzufolge supernervig.

Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Potenzen Terme

Mathematik-Nachhilfe: Aufgaben zu Potenzfunktionen, Teil 1


Zuckerwürfel, deren Volumen allesamt die Potenz 3 voweisen© sassi / PIXELIO

Funktionen, die nur eine Variable mit einer Potenz vorweisen, nennt man in der Mathematik Potenzfunktionen. Die einfachste hiervon auftretende Potenzfunktion kennt man daher bereits: y = x – die sogenannte erste Winkelhalbierende. Eine weitere kennt man aber bereits auch: y = x² – die sogenannte Normalparabel. Wie man sieht, ist man nicht vollkommen ahnungslos, wenn diese Funktionen in Mathe besprochen werden. Das ist doch schön! Je nachdem, ob nun die Potenz der der Potenzfunktion gerade oder ungerade ist oder positiv oder negativ, unterscheiden sich ihre Graphen entschieden. Das ist das wichtigste Merkmal dieser Funktionen! Daher sollte man sich die Potenz der Potenzfunktion immer ganz genau anschauen.

Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Quadratische Funktionen Quadratische Gleichungen Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Funktionen, Teil 1

Normalparabel, Geodreieck und Lineal © Claudia Hautumm / PIXELIO

Nach linearen Funktionen werden im Fach Mathematik ausgiebig quadratische Funktionen behandelt. Der Funktionsterm von quadratischen Funktionen weist hierbei immer eine Variable mit der Potenz zwei (x²) auf. Den Graph solcher Funktionen nennt man eine Parabel. Weist eine quadratische Funktion vor dem x² keinen Faktor auf (außer natürlich den Faktor 1 😉 ), ist der Graph der Funktion immer eine sogenannte Normalparabel. Praktischerweise gibt es hierfür extra Normalparabel-Schablonen, mit denen man den Graph in Nullkommanix in ein Koordinatensystem einzeichnen kann. Quadratische Funktionen sind genauso wie linearen Funktionen in Mathe superwichtig. Diese beiden Funktionen bilden die Säulen der späteren Analysis, bei der über ein komplettes Schuljahr Funktionsuntersuchungen auf der Schülerinnen- und Schüler-Agenda stehen. Je besser man hierbei zuvor diese beiden Stoffgebiete verstanden hat, umso leichter fällt einem das „Mathematikfunktionsuntersuchungsschuljahr“.

Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 3

Der Graph einer Betragsfunktion |x|

Funktionen können in der Mathematik immer in einem Koordinatensystem dargestellt werden. Die Darstellung einer Funktion im Koordinatensystem nennt man den Graph der Funktion. Der Graphen einer Funktion kann hierbei einen ununterbrochen durchgängigen Verlauf vorweisen oder auch eine oder mehrere sogenannte Lücken haben. Eine Lücke stellt nämlich eine Stelle an einer Funktion dar, wo die Funktion nicht definiert ist. Bei der Funktionsgleichung einer Funktion kann man das bereits ebenso sehen, ob eine Funktion unterbrochen ist oder nicht. Besteht die Funktion beispielsweise aus einem Bruchterm, so weist deren Verlauf höchstwahrscheinlich eine oder mehrere Lücken auf. Ebenso zeigen sich Lücken bei der Definitionsmenge. Alle Zahlen, die bei der Definitionsmenge einer Funktion ausgeschlossen sind, sind Lücken bei deren Graphen.

Kategorien
Dreisatz Geometrie Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 6

Kalkulation des Eigenheims © Tim Reckmann / PIXELIO

Es soll ja noch vorkommen, dass Menschen hierzulande bauen wollen, sprich ein Eigenheim haben wollen. Um ein Eigenheim zu realisieren, sind sehr, sehr viele Schritte notwendig – die alle wohlweislich geplant sein sollten. Ansonsten droht einem scheller ein finanzielles Fiasko, als man denkt. Ein sehr wichtiger Schritt zur Realisation eines Eigenheimes stellt hierbei der Bauplatz dar. Ein Haus muss ja irgendwo stehen! Oftmals hat man für sein geplantes eigenes Haus keinen Bauplatz – und muss diesen daher erst kaufen. Und hier kommt die Mathematik ins Spiel – sowie viel, viel an Geld. Ein Bauplatz ist ja nichts anderes als eine Fläche, die man berechnen kann. Das Gleiche gilt natürlich für deren Preis!