Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 9

Umformung und Berechnung von Termen © Sven Dovermann / PIXELIO

Mittels Termumformungen erhält man in der Regel eine Vereinfachung eines Terms. Das hat ja auch einen Sinn. Schließlich möchte man durch Termumformungen beispielsweise die Lösung einer Gleichung ermitteln oder eine binomische Formel von der unaufgelösten Form in die aufgelöste Form bringen. Termumformungen basieren hierbei auf algebraischen Grundregeln. Wendet man diese algebraischen Grundregeln bei Termen korrekt an, so verändert man den Wert des Terms nicht. In der Sprache der Mathematik nennt man das Wertgleichheit. Wertgleiche Terme bleiben mittels algebraischer Umformung weiterhin wertgleich. Wichtig ist es, alle Regeln zur Vereinfachung eines Terms sehr gut zu verinnerlichen. Umso mehr verliert Mathe dann auch seinen Schrecken. Schließlich geht es ja immer und immer wieder in diesem Fach um Umformungen von Termen!

Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 1

Aufeinander aufbauende Mathematik-Stoffgegbiete vereinfacht dargestellt © Stephanie Hofschlaeger / PIXELIO

Bruchterme hat man im Fach Mathe nicht umsonst sehr intensiv gepaukt. Schließlich bilden diese die Grundbausteine von Bruchgleichungen – und späteren gebrochenrationalen Funktionen. Wie man hier augenscheinlich sieht, ist die Mathematik stets aufeinander aufbauend bzw. verschiedene vorherige Stoffgebiete in einem neuen enthalten. Außer Bruchterme muss man nämlich auch bei Bruchgleichungen vor allem Gleichungen gut auflösen können. Beides ist hier bereits nicht mehr sooo leicht. Zum einen sind die Terme, die aufgrund der speziellen Form der Gleichungen auftreten können, teils schon sehr umfangreich, zum anderen muss man bei Bruchgleichungen auch immer den Definitionsbereich bestimmen und diesen mit der Lösung hin abgleichen – und stets aufpassen, dass hier eine Äquivalenzumformung vorliegt.

Kategorien
Logarithmus Mathe Mathematik Nachhilfe Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Logarithmen, Teil 2

Eine schwierige mit Rechenschieber zu lösende Aufgabe © Karl-Heinz Laube / PIXELIO

Ein Logarithmus kann in Mathe ja stets mit folgender Gleichung wiedergegeben werden logb y = x. Hierbei stellt b die Basis und y den Numerus des Logarithmus dar. Das x ist der Exponent, mit dem man die Basis b potenzieren muss, um den Numerus y bestimmen zu können. Aufgrund des Aufbaus einer Logarithmus-Gleichung ergeben sich drei verschiedene Aufgaben-Typen – je nach gesuchter Variable. Denn je nach Aufgabe kann bei der Gleichung das x gesucht sein, das b oder das y. Beim Lösen der gesuchten Variable muss man sich hierbei stets die Wechselbeziehung des Logarithmus zu folgender Potenzschreibweise vor Augen führen: logb y = x entspricht: bx = y. Dann kann man auch in Mathe ohne allzu große Schwierigkeiten diese höhere Rechenoperation meistern.

Kategorien
Mathe Mathematik Nachhilfe Punktsymmetrie Symmetrien

Mathematik-Nachhilfe: Aufgaben zur Punktspiegelung, Teil 2

Die Flagge von Costa Rica an einer Schule © Dieter Schütz / PIXELIO

Im Alltag gibt es immer mal wieder vorkommende Phänomene aus dem Mathematik-Unterricht. Ein gutes Beispiel hierfür ist die Punktspiegelung. Viele Automarken, noch mehr Flaggen sowie einige Verkehrsschilder sind nämlich punktsymmetrisch. In der Sprache der Mathematik heißt das, dass bei diesen Zeichen oder Symbolen ein Symmetriezentrum M vorliegt, an dem jeder Symmetriepartner mit dem anderen zusammenfällt, und zwar bei einer 180º-Drehung bzw. einer Halbdrehung. Daher kann man bei solchen Zeichen oder Symbolen recht einfach feststellen, ob eine Punktsymmetrie vorliegt. Das Gleiche gilt für das Zeichnen von punktsymmetrischen Punkten oder Flächen in der Mittelstufe in Mathe. Punktsymmetrische Figuren zu zeichnen, ist nämlich kinderleicht. Auf eine andere Art muss man dies dann wiederum in der Oberstufe abrufen, und zwar bei der Analysis. Hier können nämlich punktsymmetrische Funktionen zum Ursprung auftreten. Die Punktspiegelung ist daher auch im Fach Mathe immer mal wieder vorkommend.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 6

Ein Beispiel für zwei Lösungen einer quadratischen Gleichung

Eine quadratische Gleichung hat ja als Lösungen entweder zwei Lösungen, eine Lösung oder keine Lösung. Fast bis zum Erbrechen überprüft man dies rechnerisch bei unzähligen quadratischen Gleichungen. Das hat auch mit den verschiedenen rechnerischen Lösungsverfahren zu tun, die man hier immer auch anwenden muss – und beim Lösen der quadratischen Gleichungen mitlernt. So weiß man, dass man die p-q-Formel und das quadratische Ergänzen jeweils zum rechnerischen Lösen einer quadratischen Gleichung heranziehen kann. Ebenso wissen ältere Semester, dass das auch über die sogenannte Mitternachtsformel funktioniert. Aufgrund des vielen Rechnens vergisst man hierbei aber, dass man jede quadratische Gleichung auch zeichnerisch lösen kann. Zugegebenermaßen ist das zwar mühsamer und ungenauer als die rechnerischen Lösungsverfahren – aber es bringt einem noch einmal entschieden den Aufbau quadratischer Gleichungen näher.