Kategorien
Mathe Mathematik Nachhilfe Potenzen Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 6

Potenzen sind in Mathe allgegenwärtig

Potenzen begegnen einem in Mathe als Schülerin und Schüler von der Grundschule an bis zum Abitur. Das zeigt deren große Bedeutsamkeit. In der Grundschule wird hierbei die Beziehung einer Potenz zur Multiplikation aufgezeigt. In der Mittelstufe erweitert sich das Anwendungsspektrum von Potenzen. Es kommen Variablen hinzu, die Potenzen vorweisen. Das Zusammenfassen, Ausklammern/Faktorisieren und das Klammernauflösen wird dann hierbei geübt. Hierauf schließen sich die sehr wichtigen binomischen Formeln an und darauf vor Abschluss der Mittelstufe die verschiedenen Potenzgesetze. In der Oberstufe muss man schließlich von unterschiedlichsten Termen Ableitungen machen und daraufhin auch noch Integrale von Termen bilden, auch hier sind Potenzen allgegenwärtig. Wie man sieht – sind im Fach Mathematik Potenzen fundamental wichtig.

Kategorien
Mathe Mathematik Nachhilfe Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Logarithmen, Teil 1

Ein Rechenschieber zur Bestimmung von Logarithmen © Klicker / PIXELIO

Zu jeder Rechenoperation gibt es in der Mathematik eine Gegenrechenoperation: Zum Addieren das Subtrahieren, zum Multiplizieren das Dividieren und zum Potenzieren – das Logarithmieren. In Mathe Logarithmen verstehen, geht demzufolge über das Verstandenhaben von Potenzen. Das sollte doch machbar sein! Entscheidend beim Logarithmus ist, dass man sich dieses Wechselverhältnis zu der Potenz immer vor Augen führt: logb y = x   entspricht:    bx = y. Dadurch kann man jeden Logarithmus zu einer Potenz hin umwandeln – und das Ergebnis ermitteln. Ganz am Anfang „fühlen“ sich Logarithmen irgendwie „fremd“ an. Das liegt einfach an der ungewohnten Schreibweise. Je häufiger man diese aber in Potenzen umwandelt, desto „normaler“ fühlen diese sich aber an.

Kategorien
Mathe Mathematik Nachhilfe Potenzen Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 5

Das Zimmer einer hiesigen Lehranstalt © Manfred Jahreis / PIXELIO

Wer in Mathematik gegenüber seinen Mitschülern beim Stoffgebiet Potenzen die Aufgaben am schnellsten löst, ist nicht automatisch am potentesten, sprich am stärksten (potens = das lateinische Adjektiv für stark). Der Knabe oder das junge Fräulein kann einfach gut rechnen – und hierbei Potenzgesetze richtig anwenden. Da Potenzen auf der Rechenoperation des Multiplizierens basieren, beherrschte der Knabe oder das junge Fräulein das Malnehmen unter Garantie auch schon sehr gut. Daher war der Switch hin zu Potenzen und deren Potenzgesetze für dieses Kind ein Leichtes. Gut aufpassen und gut mitmachen, zahlt sich schließlich vor allem im Fach Mathematik aus. Dadurch ist man aber auch alles andere als ein Streber oder eine Streberin. Man erfüllt einfach seinen Job, der zu diesem Zeitpunkt Schülerin oder Schüler heißt – und das kontinuierlich.

Kategorien
Mathe Mathematik Nachhilfe Potenzen Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 4

Ein gängiger Taschenrechner in Mathe © Konstantin Gastmann / PIXELIO

In der Mathematik können große Zahlen in der Schreibweise einer abgetrennten Zehnerpotenz wiedergegeben werden, die auch „scientific notation“ genannt wird. Die großen Zahlen werden hierbei dahingehend aufgelöst – mittels eines Produktes aus einer Zahl zwischen 1 und 10 und einer Zehnerpotenz. Beispiel: 55748 = 5,5748 · 104. Jeder Taschenrechner wandelt übrigens automatisch jede große Zahl zu einer abgetrennten Zehnerpotenz um, wenn diese auf normale Weise als Zahl nicht mehr dort angezeigt werden kann. Auf einigen Taschenrechner wird hierbei anstelle von 5,5748 · 104 entweder die Schreibweise 5.5748  04 verwendet oder die Schreibweise 5.5748 E 04 (das „E“ steht hier für Exponent). Da die Anzeige bei Taschenrechnern variiert, sollte man auf jeden Fall bei seinem eigenen, den man in Mathe benutzt, wissen, wie dort die „scientific notation“ dargestellt wird.

Kategorien
Mathe Mathematik Nachhilfe Prozentrechnung Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zum Prozentrechnen, Teil 4

Alkoholfreie Fahrt Pflicht © Viktor Mildenberger / PIXELIO

Bei der Prozentrechnung in Mathe bekommen Schülerinnen und Schüler nicht nur Prozentangaben näher gebracht, sondern auch Promilleangaben. Beide Begriffe hat man hierbei bereits vorher kennengelernt, wenn auch in einem anderen Zusammenhang. Prozentangaben nämlich in der Regel bei Preissenkungen und Rabatten, Promilleangaben hingegen stets mit Alkohol und Verkehrskontrollen. Hat man schließlich bei einer Verkehrskontrolle zu viel „Benzin“/Alkohol im Blut, sprich zu viele Promille, so verliert man ja bekanntlich seinen Führerschein. In Deutschland liegt hierbei die sogenannte Promillegrenze bei 0,5 ‰. Im Gegensatz zu einer Prozentangabe, die für einen eher förderlich ist, da man hierdurch oftmals Geld sparen kann, ist eine Promilleangabe daher eher mit Angstschweiß verbunden – vorausgesetzt man hat „zu tief ins Glas geschaut“.