Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Quadratische Funktionen Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratische Funktionen, Teil 3

Normalparabel in verschiedene Richtungen verschoben

Wie fit man in Mathe in Algebra ist, zeigt sich augenscheinlich bei dem Stoffgebiet quadratische Funktionen. Hier muss man nämlich schon teils schwierigere Termumformungen machen. Weist nämlich eine quadratische Funktion die Form f(x) = x² + px + q auf, dann kann man beispielsweise nicht sofort sagen, wie der Scheitelpunkt der Funktion ist. Hierfür muss man den Term der Funktion algebraisch in die sogenannte Scheitelpunktform umformen. Nur dann kann man schließlich den Scheitelpunkt der Funktion eindeutig bestimmen. Um diese wichtige Termumformung in Mathe korrekt durchzuführen, muss man aber auch die binomischen Formeln gut verinnerlicht haben, da die Scheitelpunktform einen Term darstellen – bestehend aus einer binomischenen Formel. Mathe ist daher alles andere als leicht, aber auch nicht superschwer – wenn man in diesem Fach immer am Ball bleibt!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 11

Der richtige Lösungsweg führt in Mathe zum Ziel © JMG / PIXELIO

Es gibt bei einer quadratischen Gleichung verschiedene rechnerische Lösungsverfahren. Wendet man diese korrekt an, ergeben jene allesamt das richtige Ergebnis. So funktioniert ja Mathe! Wie gelingt das einem aber? Das Stichwort ist hier: Fleiß! Auch wenn man am Anfang vielleicht nicht zur Gänze verstanden hat, wie die p-q-Formel oder das quadratische Ergänzen funktioniert, dann sollte man auf keinen Fall „den Kopf in den Sand stecken“. Vielmehr sollte man eigenständig versuchen Aufgaben zu lösen. Die Aufgaben überprüft man dann im Unterricht oder mit den gemachten Aufgaben von KlassenkameradInnen. Irgendwann macht es dann nämlich „klick“. Das passiert aber nur, wenn man weiter intensiv die Aufgaben macht – und genau guckt, wie man mittels eines Lösungsverfahren zur Lösung einer quadratischen Gleichung kommt und was man für Fehler hierbei evtl. gemacht hat.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 10

Schule und insbesondere Mathe sind nicht schön. © Alexandra H. / PIXELIO

Bei quadratischen Gleichungen kann man mittels der p-q-Formel, der Mitternachtsformel oder eines quadratischen Ergänzens deren Lösungen ermitteln. Das sind ja alles bekanntermaßen Lösungsverfahren für quadratische Gleichungen. „Was aber, wenn die Lösung bereits vorliegt?“, sagt der Mathematik-Lehrer. „Schön“, sagt hier ein nicht so interessierter Mathe-Schüler. „Dann muss ich erst gar nicht rechnen.“ „Moment, das kann aber nicht sein,“ sagt hingegen eine an Mathematik eine Freude habende Schülerin. „Stimmt“, sagt schließlich der Lehrer. „Liegt eine Lösung einer quadratischen Gleichungen bereits vor, so soll man mittels eines Lösungsverfahren deren Normalform ermitteln!“, fährt dieser weiter. „Das macht man dann über den sogenannte Satz von Vieta, und zwar …“ „Mathe ist doch nie schön“, denkt sich schlussendlich der an dem Fach nicht interessierte Schüler.

Kategorien
Funktionen Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu quadratischen Funktionen, Teil 2

Die Normalparabel

Der bekannteste Graph einer quadratischen Funktion ist die sogenannte Normalparabel. Da es hierfür in Mathe extra eine Schablone gibt, kennt man die Normalparabel normalerweise sehr gut – und deren möglichen Verläufe im Koordinatensystem. Hierfür muss man sich zuvor nur die quadratischen Funktionen genau anschauen. Dann weiß man auch, wo man die Normalparabel im Koordinatensystem einzeichnen muss. Man orientiert sich hierbei an der Funktion y = x². Das stellt die nach oben geöffnete Normalparabel, vom Koordinatenursprung ausgehend, dar. Heißt die Funktion jedoch y = x² + 4, so muss man die Funktion um vier Längeneinheiten nach oben verschieben (entlang der y-Achse). Bei der Funktion y = (x – 4)² um vier Längeneinheiten nach rechts (entlang der x-Achse). Bei der Funktion y = (x – 4)² + 4 um vier Längeneinheiten nach rechts und vier Längeneinheiten nach oben.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen Terme

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 9

Eine “natürliche“ quadratische Ergänzung © olga meier-sander / PIXELIO

Die quadratische Ergänzung zur Lösung einer quadratischen Gleichung kann man in Mathe nicht oft genug üben! Dadurch „brennt“ sich zum einen dieser wichtige Lösungsweg zur Bestimmung der Lösung einer quadratischen Gleichung ein sowie insbesondere die binomischen Formeln. Das Entscheidende bei einer quadratischen Ergänzung stellt hierbei der Mittelterm der 1. oder 2. Binomischen Formel dar. Von diesem ausgehend ergänzt man ja mittels einer Äquivalenzumformung den 3. Einzelterm doppelt – indem man den Mittelterm zuerst durch den ersten Einzelterm der unaufgelösten Form und den Faktor 2 teilt. Darauf quadriert man jenen noch! Deshalb heißt ja in der Mathematik jene Algebra-Umformung quadratische Ergänzung. Hat man jedenfalls einmal den Umformungs-Prozess verstanden, ist die quadratische Ergänzung für Schülerinnen und Schüler ein Klacks.