Kategorien
Gleichungen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Gleichungen, Teil 2

Eine “zuckersüße“ Gleichung © S. Hofschlaeger / PIXELIO

Es gibt in Mathe eine Unzahl verschiedener Arten von Gleichungen. Das liegt an den großen Variationsmöglichkeiten von Termen. Eine Gleichung besteht ja aus Termen. Da ein einziger Term selbst wiederum sehr unterschiedliche Mathematik-Zeichen vorweisen kann, entstehen hierdurch jede Menge verschiedenartiger Gleichungen. Neben den Grundrechenarten, der Addition, der Subtraktion, der Multiplikation und der Division, kann ein Term auch Potenzen und Wurzeln vorweisen – und noch einiges mehr an Mathe-Verknüpfungen. Verschiedenartige Gleichungen kann man aber auch sehr gut veranschaulichen, wenn man eine Gleichung zur Funktion macht und sich den Graphen der Funktion anschaut. Dann sieht man nämlich große Unterschiede in dem Verlauf einer Funktion. Eine lineare Funktion, die auf einer linearen Gleichung basiert, ist z. B. eine Gerade, eine quadratische Funktion, die auf einer quadratischen Funktion basiert, ist hingegen eine Parabel.

Kategorien
Funktionen Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 1

Graphen von Funktionen und andere Darstellungen im Fach Mathematik

Neben Gleichungen sind in Mathe ebenso Funktionen überaus wichtig. Beides bedingt sich ja. Eine Funktion kann ja immer auch mittels einer Gleichung wiedergegeben werden. Eine Funktion weist hierbei immer folgende Merkmale auf: Sie hat eine Definitionsmenge, eine Zuordnungsvorschrift, eine Funktionsgleichung und einen Funktionsterm. Mittels einer Wertetabelle kann oft eine Funktion in ein Koordinatensystem gezeichnet werden. Das Schaubild im Koordinatensystem nennt man Graphen der Funktion. Eine der einfachsten Funktionen ist die erste Winkelhalbierende. Diese hat die Definitionsmenge D = ℝ, die Zuordnungsvorschrift x → x, die Funktionsgleichung y = x und der Funktionsterm ist x. Der Graph dieser Funktion ist eine Gerade. Das alles sollte man bei Funktionen sehr gut verinnerlicht haben, da in der Oberstufe in der Analysis nur Funktionen analysiert werden.

Kategorien
Geometrie Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zum Flächeninhalt von Vielecken, Teil 3




Das Zeichnen mit Geodreieck und Bleistift © XxJUDGExX / PIXELIO

Im Fach Mathematik gehört auch die Geometrie und hierbei besonders das Zeichnen und Berechnen von Flächen verschiedener Vielecke zu einem wichtigen Stoffgebiet. Daher ist es hier nicht nur wichtig, gut mit dem Taschenrechner umzugehen, sondern auch gut mit dem Geodreieck und dem Bleistift. Möglichst immer Millimeter-genau jegliche Strecken und Winkel auf das Blatt zu zeichnen, das ist nicht so einfach. Das erfordert Übung und Genauigkeit. Umso wichtiger ist es, dass man immer ein gutes Geodreieck hat, dessen Skala tipptopp ablesbar ist. Ein stets gespitzter Bleistift ist ebenfalls unabdingbar. Die Genauigkeit kommt dann mehr und mehr durch die Übung, sprich durch das eigenständige Lösen von Aufgaben.

Kategorien
Binomische Formeln Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 5

Der Ursprung von Alegbra – das Zählen © S. Hofschlaeger / PIXELIO

Ob man in Mathe alle algebraischen Grundkenntnisse gut verinnerlicht hat, zeigt sich ganz besonders bei quadratischen Gleichungen (und quadratischen Funktionen). Beim Lösen einer quadratischen Gleichung muss man ja oftmals eine binomische Formel auflösen oder mittels quadratischen Ergänzens eine binomische Formel heranziehen. Das Ausmultiplizieren muss man ebenso gut beherrschen. Hierbei kann beim Ausmultiplizieren hin und wieder eine Minusklammer auftreten, auch sind Vorzeichen bei der p-q-Formel stets genau zu beachten. Wie man sieht, treten bei quadratischen Gleichungen schon eine Menge an algebraischen Grundkenntnissen auf einmal auf. Hat man vorher im Fach Mathematik bei einer niederen Klasse hier eine Lernlücke gehabt, so tritt diese hier zwangsläufig wieder auf. Spätestens dann sollte man diese aber schließen. Bei höheren Gleichungen in der Oberstufe muss man nämlich wiederum Algebra-Basics gewissermaßen auf Knopfdruck abrufen können.

Kategorien
Bruchterme Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 4

Fünf Zehntel bzw. gekürzt ein Halb © Franziska Püller / PIXELIO

Das Erweitern und Kürzen von Brüchen ist etwas, das man in Mathe bereits in der Grundschule gelernt hat. Man erweitert einen Bruch mit dem sogenannten Erweiterungsfaktor und man kürzt einen Bruch mit dem sogenannten Kürzungsfaktor. Hat man das Erweitern und Kürzen von Brüchen im Fach Mathematik einmal verstanden, so kann man sein einst erworbenes Können bei Bruchtermen erneut anwenden. In der Mittelstufe muss man das nämlich erneut bei dem Stoffgebiet Bruchterme abrufen können. Und je besser man das damals verinnerlicht hatte, desto leichter wird man es hier dann richtig reproduzieren können. Darüber hinaus kommen hier noch des Öfteren algebraische Grundkenntnisse wie das Ausklammern/Faktorisieren zum Zuge – was man aber auch bereits vorher in Mathe gelernt hat.