Kategorien
Funktionen Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 3

Eine Funktion in Mathe © Samuel-G. / PIXELIO

Beim Stoffgebiet lineare Funktionen in Mathe lernt man bereits, dass bei Funktionen sowohl immer rechnerisch als auch zeichnerisch Funktionsuntersuchungen gemacht werden können. Lineare Funktionen weisen ja auch, wie alle anderen Funktionen, bestimmte Merkmale/Charakteristika auf. So sind lineare Funktionen beispielsweise normalerweise linear steigend oder fallend (das kann man anhand der Funktionsgleichung ablesen) und sie haben einen Schnittpunkt mit der x und y-Achse (das kann man beides rechnerisch bestimmen). Der Graph einer linearen Funktion ist hierbei eine Gerade – die dann ebenfalls alle Merkmale/Charakteristika aufweist, welche man rechnerisch bestimmt hat oder bestimmen kann. Aus diesem Grund sind im Fach Mathematik lineare Funktionen auch sehr wichtig, da sie zur Gänze bereits darlegen, was das Besondere an ihnen ist. Bei anderen Funktionen verhält es sich dann genauso.

Kategorien
Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 1

Zwei parallel verlaufende – dicke – Geraden © RoKnoFoto / PIXELIO

Die ersten in Mathe dran kommenden Funktionen sind lineare Funktionen.

Diese haben folgende Zuordnungsvorschrift:

x ↦ m · x + n

und diese Funktionsgleichung:

y = m · x + n.

Wie man sieht, weisen lineare Funktionen in der Regel eine Variable/„x“ auf, die die Potenz hoch eins/„x“ bzw. „x¹“ besitzt. Darüber hinaus einen konstanten Wert/„m“, der mit der Variablen verbunden ist. „m“ ist hierbei die Steigung der linearen Funktion. Ebenso besitzen lineare Funktionen oftmals einen zweiten konstanten Wert, nämlich „n“. „n“ wird hierbei als das absolut Glied bezeichnet und ist der Ordinatenabschnitt, also der Schnittpunkt mit der y-Achse. Hat man die Funktionsgleichung einer linearen Funktion gegeben, so kann man diese immer sofort in ein Koordinatensystem einzeichnen. Der Graph der so dargestellten linearen Funktion ist hierbei immer eine Gerade.