Kategorien
Funktionen Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Funktionen, Teil 2

Eine lineare Funktion im Koordinatensystem grafisch veranschaulicht © Honina

Eine Funktion kann man in Mathe immer grafisch darstellen, und zwar in einem Koordinatensystem. Diesen optischen Verlauf einer Funktion nennt man den Graph der Funktion. Einfache Funktionen wie lineare Funktionen und quadratische Funktionen kann man hierbei recht einfach in ein Koordinatensystem einzeichnen. Bei höheren Funktionen wie ganzrationale Funktionen 3. oder 4. Grades oder gebrochenrationalen Funktionen ist das schon um einiges schwieriger. Umso wichtiger ist es daher, dass bei solchen Funktionen vorher eine genaue Wertetabelle aufgestellt wird, die in einem bestimmten Intervall aufs Beste den Verlauf der Funktion optisch veranschaulicht. Was bei einer Funktion aber alles zu beachten ist, das lernt man in Mathematik schrittweise bzw. von Funktion zu Funktion – und das ab der Mittelstufe.

Kategorien
Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Wurzeln, Teil 4

Ein “schreckliches“‘ Tafelbild aus dem Mathematik-Unterricht © bernhard / PIXELIO

Terme, die einem in Mathe Angst machen, sind ein Ausdruck von algebraischer Unsicherheit. Je schwieriger die Terme werden, desto stärker kann daher auch die Verunsicherung steigen – und somit auch der Frust. Das kann einem dann im Nu das ganze Fach Mathematik verleiden. So weit sollte es daher unter keinen Umständen kommen! Terme sollten für einen keine Term-Monster werden. Oft bekommen Schülerinnen und Schüler größere algebraische Schwierigkeiten bei ganz neu aussehenden Term-Gebilden, wie das bei Wurzeln der Fall ist. Das Wurzelzeichen stellt ja auch ein ganz neues und deshalb erst einmal ein gänzlich ungewohntes Zeichen dar. Bei Wurzeln gilt aber das Gleiche wie bei anderen Term-Ausdrücken: Sie verlieren ihren Schrecken – durch Üben, Üben, Üben anhand von Aufgaben.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zum Stoffgebiet Term, Teil 9

Umformung und Berechnung von Termen © Sven Dovermann / PIXELIO

Mittels Termumformungen erhält man in der Regel eine Vereinfachung eines Terms. Das hat ja auch einen Sinn. Schließlich möchte man durch Termumformungen beispielsweise die Lösung einer Gleichung ermitteln oder eine binomische Formel von der unaufgelösten Form in die aufgelöste Form bringen. Termumformungen basieren hierbei auf algebraischen Grundregeln. Wendet man diese algebraischen Grundregeln bei Termen korrekt an, so verändert man den Wert des Terms nicht. In der Sprache der Mathematik nennt man das Wertgleichheit. Wertgleiche Terme bleiben mittels algebraischer Umformung weiterhin wertgleich. Wichtig ist es, alle Regeln zur Vereinfachung eines Terms sehr gut zu verinnerlichen. Umso mehr verliert Mathe dann auch seinen Schrecken. Schließlich geht es ja immer und immer wieder in diesem Fach um Umformungen von Termen!

Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchgleichungen, Teil 1

Aufeinander aufbauende Mathematik-Stoffgegbiete vereinfacht dargestellt © Stephanie Hofschlaeger / PIXELIO

Bruchterme hat man im Fach Mathe nicht umsonst sehr intensiv gepaukt. Schließlich bilden diese die Grundbausteine von Bruchgleichungen – und späteren gebrochenrationalen Funktionen. Wie man hier augenscheinlich sieht, ist die Mathematik stets aufeinander aufbauend bzw. verschiedene vorherige Stoffgebiete in einem neuen enthalten. Außer Bruchterme muss man nämlich auch bei Bruchgleichungen vor allem Gleichungen gut auflösen können. Beides ist hier bereits nicht mehr sooo leicht. Zum einen sind die Terme, die aufgrund der speziellen Form der Gleichungen auftreten können, teils schon sehr umfangreich, zum anderen muss man bei Bruchgleichungen auch immer den Definitionsbereich bestimmen und diesen mit der Lösung hin abgleichen – und stets aufpassen, dass hier eine Äquivalenzumformung vorliegt.

Kategorien
Bruchterme Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu Bruchtermen, Teil 6




Ein Rucksack mit Mathebuch und anderem Wichtigen für die Grundschule © birgitta hohenester / PIXELIO

Ein Rucksack mit Mathebuch und anderem Wichtigen für die GrundscDas Kann-ich-doch-bereits-Phänomen gilt bei dem Stoffgebiet Bruchterme nicht nur für die Multiplikation von Bruchtermen, sondern auch für die Division. Aus der Grundschule wissen gelehrige Schülerinnen und Schüler noch, dass bei Brüchen die Division ähnlich funktioniert wie bei der Multiplikation von Brüchen. Es gibt nur einen klitzekleinen Unterschied. Ein Bruch wird mit einem anderen Bruch dividiert, in dem man beim zweiten Bruch den Kehrwert bildet und dann mit dem ersten malnimmt. Das, was für das Bruchrechnen gilt, das gilt nun wiederum auch für Bruchterme. Daher ist das Kann-ich-doch-bereits-Phänomen alles andere als ein Zufall, sondern es liegt einfach an der gleichen Berechnungsweise – und an dem Gutgelernthaben der Multiplikation und Division von Brüchen aus der eigenen Grundschulzeit.