Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 8

Der falsche Mathe-Lösungsweg © Tim Reckmann / PIXELIO

Liegt eine reinquadratische Gleichung vor, so kann man diese natürlich auch über die Anwendung der p-q-Formel lösen! Das geht natürlich – das ist aber alles andere als logisch sinnvoll! In Mathe geht es ja auch beim Aufgabenlösen um den möglichst unkomplizertesten und damit auch schnellesten Weg. Neben einer Zeitersparnis ist dieser Weg auch immer mit einem Fehlerverringerungsrisiko verbunden. Ein Musterbeispiel stellt hierfür eine reinquadratische Gleichung dar. Da diese keinen Mittelterm vorweist, kann diese im Nu durch ein Wurzelziehen gelöst werden. Mit der p-q-Formel geht das, wie gesagt, auch, das dauert aber viel, viel länger. Auch besteht hierbei die Gefahr, dass man einen Leichtsinnsfehler macht – und wirklich unnötige und somit wirklich ärgerliche Punkte verliert. Das spiegelt sich ja wiederum in der Mathe-Note wider!

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 7

Eine Puzzlestück-Ergänzung © S. Hofschlaeger / PIXELIO

Quadratische Gleichungen löst man normalerweise stets rechnerisch. Neben der p-q-Formel (und früher der Mitternachtsformel) ist hierbei besonders das quadratische Ergänzen enorm wichtig. Das hat natürlich auch seinen Grund. Mittels des quadratischen Ergänzens kann man nämlich nicht nur die Lösungen jeder quadratischen Gleichung ermitteln, sondern auch den Scheitelpunkt jeder quadratischen Funktion. In der Normalform, x² + px + q, ist das ja nicht möglich. In der sogenannten Scheitelpunktform hingegen sehr wohl – und diese erzeugt man algebraisch mittels des quadratischen Ergänzens. Um jedoch tipptopp quadratisch ergänzen zu können, muss man auch „im Schlaf“ die binomischen Formeln können. Das quadratische Ergänzen zielt schließlich immer auf die Anwendung einer binomischen Formel.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 6

Ein Beispiel für zwei Lösungen einer quadratischen Gleichung

Eine quadratische Gleichung hat ja als Lösungen entweder zwei Lösungen, eine Lösung oder keine Lösung. Fast bis zum Erbrechen überprüft man dies rechnerisch bei unzähligen quadratischen Gleichungen. Das hat auch mit den verschiedenen rechnerischen Lösungsverfahren zu tun, die man hier immer auch anwenden muss – und beim Lösen der quadratischen Gleichungen mitlernt. So weiß man, dass man die p-q-Formel und das quadratische Ergänzen jeweils zum rechnerischen Lösen einer quadratischen Gleichung heranziehen kann. Ebenso wissen ältere Semester, dass das auch über die sogenannte Mitternachtsformel funktioniert. Aufgrund des vielen Rechnens vergisst man hierbei aber, dass man jede quadratische Gleichung auch zeichnerisch lösen kann. Zugegebenermaßen ist das zwar mühsamer und ungenauer als die rechnerischen Lösungsverfahren – aber es bringt einem noch einmal entschieden den Aufbau quadratischer Gleichungen näher.

Kategorien
Binomische Formeln Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 5

Der Ursprung von Alegbra – das Zählen © S. Hofschlaeger / PIXELIO

Ob man in Mathe alle algebraischen Grundkenntnisse gut verinnerlicht hat, zeigt sich ganz besonders bei quadratischen Gleichungen (und quadratischen Funktionen). Beim Lösen einer quadratischen Gleichung muss man ja oftmals eine binomische Formel auflösen oder mittels quadratischen Ergänzens eine binomische Formel heranziehen. Das Ausmultiplizieren muss man ebenso gut beherrschen. Hierbei kann beim Ausmultiplizieren hin und wieder eine Minusklammer auftreten, auch sind Vorzeichen bei der p-q-Formel stets genau zu beachten. Wie man sieht, treten bei quadratischen Gleichungen schon eine Menge an algebraischen Grundkenntnissen auf einmal auf. Hat man vorher im Fach Mathematik bei einer niederen Klasse hier eine Lernlücke gehabt, so tritt diese hier zwangsläufig wieder auf. Spätestens dann sollte man diese aber schließen. Bei höheren Gleichungen in der Oberstufe muss man nämlich wiederum Algebra-Basics gewissermaßen auf Knopfdruck abrufen können.

Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 4

Der beste Lösungsweg für quadratische Gleichungen hängt von der jeweiligen Gleichung ab © S. Hofschlaeger / PIXELIO

In Mathe bei quadratischen Gleichungen die Lösungsmenge mittels pq-Formel oder quadratischen Ergänzens zu bestimmen, macht nur Sinn, wenn die quadratische Gleichung alle Glieder vorweist. Konkret heißt das: Liegt eine quadratische Gleichung mit einem quadratischen Glied/„ax²“, mit einem linearen Glied/„bx“ und einem absoluten Glied/„c“ vor, dann muss man obige Lösungsverfahren anwenden. Fehlt hingegen mindestens das lineare Glied oder das absolute Glied, dann löst man die quadratische Gleichung immer anders. Auch Ökonomie ist im Fach Mathematik sehr wichtig, da dies eine nicht zu unterschätzende Zeitersparnis mit sich bringt. Je mehr Routine man aber im Lösen von quadratischen Gleichungen hat, desto mehr wird man aber auch automatisch stets das beste Lösungsverfahren, sprich das am ökonomischsten, anwenden.