Kategorien
Binomische Formeln Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 4

Warum, weshalb schon wieder in Mathe binomische Formeln © w.r.wagner PIXELIO www.pixelio.de

„Hört das denn in Mathe niemals auf mit den binomischen Formeln?“ fragt sich ein innerlich genervter Schüler, als just bei dem Stoffgebiet Quadratische Gleichungen binomischen Formeln wieder aus dem Nichts auftauchen. Unbeantwortete Fragen nerven ja bekanntlich ebenso sehr. Daher möchten wir hier auch keinen Schüler unnötigerweise länger als notwendig damit im Unklaren lassen. Die Antwort zu der an sich selbst gestellten Frage des Schülers ist folgende: bis zum Abitur in Mathematik – dann hat man aber endlich seine Ruhe vor den binomischen Formeln. Trotz jetziger Gewissheit macht das die ganze Sache für den Schüler natürlich nicht wesentlich besser. Korrekt lösen muss er ja in Mathe weiterhin die binomischen Formeln auflösen können. Und das kann man am besten, indem man das übt, übt und nochmals übt.

Kategorien
Binomische Formeln Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 3

Nadel und Faden © erysipel PIXELIO www.pixelio.de

Binomische Formel „meets“ Distributivgesetz „meets“ Minusklammer – die volle Ladung Algebra! Wenn man bei diesem „Algebra-Crossover“ stöhnt, dann ist das eher ein alarmierendes Zeichen. Dann sitzt nämlich fundamentales Mathematik-Handwerkszeug nicht so, wie es eigentlich sein sollte. Das kann man mit einem Schneider vergleichen, der seine Nähkunst nicht wirklich beherrscht, da er seine Nadel nicht richtig „im Griff“ hat. Deshalb pikst solch ein vermeintlicher Handwerker sich auch ständig. Einen ähnlichen Schmerz kann einem ein „Algebra-Crossover“ verursachen – wenn man die hier abzurufenden Regeln nicht verinnerlicht hat. Dann schmerzt nämlich ständig die schlechte Note, die man fortwährend in Mathe mit ziemlicher Sicherheit einfährt. Da sowohl kein Schneider äußerlich als auch kein Schüler innerlich gerne „blutet“, muss man das berufsbedingte bzw. fachbedingte Handwerkszeug tipptopp können. Irgendwelche schmerzhaften Wunden aufgrund der zu bewältigenden Mathe-Materie beim Schüler oder wegen des zu bewältigenden Stoff-Materials beim Schneider kommen sodann erst gar nicht auf.

Kategorien
Binomische Formeln Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 2

Den Blick für binomische Formeln schärfen © günther gumhold PIXELIO www.pixelio.de

Binomische Formeln korrekt auflösen zu können, ist das eine, das andere ist zu erkennen, dass überhaupt eine binomische Formel vorliegt. Denn hin und wieder müssen vorab erst bestimmte algebraische Umformungen vorgenommen werden, um klipp und klar zu sehen – dass eine binomische Formel vorliegt und um welche genau es sich hierbei handelt. Darauf kann man diese schließlich nach dem oft geübten Schema auflösen. Folgende Beispiele sollen hierbei den Schülerinnen und Schülern helfen – um einen besseren „Binomischen-Formel-Blick/Durchblick“ zu bekommen:

Kategorien
Binomische Formeln Gleichungen Mathe Mathematik Nachhilfe Terme

Mathematik-Nachhilfe: Aufgaben zu binomischen Formeln, Teil 1

Das Abitur – der höchste Schulabschluss in Deutschland © S. Hofschlaeger PIXELIO www.pixelio.de

Eine überaus wichtige algebraische Gesetzmäßigkeit stellen die binomischen Formeln dar, da diese ab der 8. Klasse in Mathe immer wieder vorkommen und somit bis zum MSA oder Abi von Schülerinnen und Schülern stets abgerufen werden können müssen. Daher ist ein gewissermaßen blindes Beherrschen der binomischen Formeln Pflicht. Ansonsten ist ein Algebra-Desaster vorprogrammiert. Denn dann kann man mit hoher Wahrscheinlichkeit auch andere algebraische Umformungen nicht korrekt – wodurch sich der komplette Rechenweg verkomplizieren oder gar im schlimmsten Fall komplett falsch sein kann. Verständlicherweise frustet beides gleich stark – und vergellt einem den Spaß an Mathe gänzlich, da die Note in Mathe dann auch  „im Keller“ beziehungsweise (wie man in Berlin eher sagt) „im Souterrain“ angekommen ist. So weit sollte es in Mathematik aber erst gar nicht kommen!