Kategorien
Gleichungen Mathe Mathematik Nachhilfe Quadratische Gleichungen

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 4

Der beste Lösungsweg für quadratische Gleichungen hängt von der jeweiligen Gleichung ab © S. Hofschlaeger PIXELIO www.pixelio.de

In Mathe bei quadratischen Gleichungen die Lösungsmenge mittels pq-Formel oder quadratischen Ergänzens zu bestimmen, macht nur Sinn, wenn die quadratische Gleichung alle Glieder vorweist. Konkret heißt das: Liegt eine quadratische Gleichung mit einem quadratischen Glied/„ax²“, mit einem linearen Glied/„bx“ und einem absoluten Glied/„c“ vor, dann muss man obige Lösungsverfahren anwenden. Fehlt hingegen mindestens das lineare Glied oder das absolute Glied, dann löst man die quadratische Gleichung immer anders. Auch Ökonomie ist im Fach Mathematik sehr wichtig, da dies eine nicht zu unterschätzende Zeitersparnis mit sich bringt. Je mehr Routine man aber im Lösen von quadratischen Gleichungen hat, desto mehr wird man aber auch automatisch stets das beste Lösungsverfahren, sprich das am ökonomischsten, anwenden.

Kategorien
Gleichungen Lineare Funktionen Lineare Gleichungen Mathe Mathematik Nachhilfe

Mathematik-Nachhilfe: Aufgaben zu linearen Funktionen, Teil 1

Zwei parallel verlaufende – dicke – Geraden © RoKnoFoto PIXELIO www.pixelio.de

Die ersten in Mathe dran kommenden Funktionen sind lineare Funktionen.

Diese haben folgende Zuordnungsvorschrift:

x ↦ m · x + n

und diese Funktionsgleichung:

y = m · x + n.

Wie man sieht, weisen lineare Funktionen in der Regel eine Variable/„x“ auf, die die Potenz hoch eins/„x“ bzw. „x¹“ besitzt. Darüber hinaus einen konstanten Wert/„m“, der mit der Variablen verbunden ist. „m“ ist hierbei die Steigung der linearen Funktion. Ebenso besitzen lineare Funktionen oftmals einen zweiten konstanten Wert, nämlich „n“. „n“ wird hierbei als das absolut Glied bezeichnet und ist der Ordinatenabschnitt, also der Schnittpunkt mit der y-Achse. Hat man die Funktionsgleichung einer linearen Funktion gegeben, so kann man diese immer sofort in ein Koordinatensystem einzeichnen. Der Graph der so dargestellten linearen Funktion ist hierbei immer eine Gerade.

Kategorien
Mathematik

Mathematik-Nachhilfe: Aufgaben zu quadratischen Gleichungen, Teil 3

Algebra in Mathe © Henry Klingberg PIXELIO www.pixelio.de

Liegt in Mathe eine quadratische Gleichung in der sogenannten Normalform vor, das heißt auf diese Art: x² + px + q, dann kann man sofort ohne Probleme deren Lösung(en) ermitteln. Hierfür gibt es ja extra die pq-Formel:

p-q-Formel

Schließlich kann man bei der Normalform den p-Wert und den q-Wert der quadratischen Gleichung sofort ablesen, so dass man daher im Nu mittels der pq-Formel deren Lösung(en) berechnen kann. Jetzt gilt es die Werte nur noch richtig einzusetzen. Hier muss man aber immer darauf Acht geben, dass speziell sowohl bei einem negativen p-Wert als auch negativen q-Wert die Vorzeichenregel richtig angewendet wird. Konkret heißt das, dass „–“ und „–“ „+“ ergeben, wenn entweder beim Einsetzen in die pq-Formel der p-Wert oder der q-Wert negativ sind.

Kategorien
Mathe Mathematik Nachhilfe Potenzen Rechenoperationen

Mathematik-Nachhilfe: Aufgaben zu Potenzen, Teil 4

Ein gängiger Taschenrechner in Mathe © Konstantin Gastmann PIXELIO www.pixelio.de

In der Mathematik können große Zahlen in der Schreibweise einer abgetrennten Zehnerpotenz wiedergegeben werden, die auch „scientific notation“ genannt wird. Die großen Zahlen werden hierbei dahingehend aufgelöst – mittels eines Produktes aus einer Zahl zwischen 1 und 10 und einer Zehnerpotenz. Beispiel: 55748 = 5,5748 · 104. Jeder Taschenrechner wandelt übrigens automatisch jede große Zahl zu einer abgetrennten Zehnerpotenz um, wenn diese auf normale Weise als Zahl nicht mehr dort angezeigt werden kann. Auf einigen Taschenrechner wird hierbei anstelle von 5,5748 · 104 entweder die Schreibweise 5.5748  04 verwendet oder die Schreibweise 5.5748 E 04 (das „E“ steht hier für Exponent). Da die Anzeige bei Taschenrechnern variiert, sollte man auf jeden Fall bei seinem eigenen, den man in Mathe benutzt, wissen, wie dort die „scientific notation“ dargestellt wird.

Kategorien
Mathematik

Logisches Denken in Mathe – wichtig fürs Leben

Der Zauberwürfel als Symbol für eine logische Ordnung der Welt © Harald Wanetschka PIXELIO www.pixelio.de

Immer und immer wieder fragen sich Schülerinnen und Schüler speziell bei Stoffgebieten im Fach Mathe: „Warum, warum, warum nur! muss ich das lernen?! Das brauche ich doch nie, nie, nie mehr in meinem späteren Leben!“ Auf eine gewisse Weise kann man die Zornesfalten und Verzweiflungsmienen der Mathematik-lernen-Müssenden in der Schule verstehen. Terme, Gleichungen, Ableitungen, Prismen, Strahlensätze und, und, und werden einem nämlich, wenn man nicht Mathe, eine Natur- oder Ingenieurwissenschaft studieren möchte, sicherlich ein Leben lang nicht mehr vors Antlitz treten und eine geistige Marter verursachen. „Also doch umsonst alles gelernt!“, werden die Mathe-Hasser sogleich von sich geben. „Geahnt habe ich das ja schon immer“, setzen sich die Wutgedanken der Mathematik-Sinn-infrage-Steller fort. „Halt, halt, halt!“, muss man diesen aber sofort entgegenhalten.